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ABSTRACT This two-part paper aims to provide a comprehensive survey on how emerging technologies,
e.g., wireless and networking, artificial intelligence (AI) can enable, encourage, and even enforce social
distancing practice. In Part I, an extensive background of social distancing is provided, and enabling
wireless technologies are thoroughly surveyed. In this Part II, emerging technologies such as machine
learning, computer vision, thermal, ultrasound, etc., are introduced. These technologies open many new
solutions and directions to deal with problems in social distancing, e.g., symptom prediction, detection and
monitoring quarantined people, and contact tracing. Finally, we discuss open issues and challenges (e.g.,
privacy-preserving, scheduling, and incentive mechanisms) in implementing social distancing in practice.
As an example, instead of reacting with ad-hoc responses to COVID-19-like pandemics in the future, smart
infrastructures (e.g., next-generation wireless systems like 6G, smart home/building, smart city, intelligent
transportation systems) should incorporate a pandemic mode in their standard architectures/designs.

INDEX TERMS Social distancing, pandemic, COVID-19, wireless, networking, positioning systems, AI,
machine learning, data analytics, localization, privacy-preserving, scheduling, incentive mechanism.

I. INTRODUCTION
In the presence of contagious diseases such as the current
COVID-19 pandemic, social distancing is an effective non-
pharmaceutical approach to limit the disease transmission.

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

By reducing the frequency and closeness of human physical
contacts, social distancing can lower the probability of the
disease transmission from an infected person to a healthy one,
thereby significantly limiting the disease’s spread and sever-
ity. During the ongoing COVID-19 pandemic, many govern-
ments have implemented various social distancing measures
such as travel restrictions, border control, public places
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closures, and quarantines. Nevertheless, the implementation
of such aggressive and large-scale measures is facing signifi-
cant challenges such as negative economic impacts, personal
rights violation, difficulties in changing people’s behavior,
and the difficulties arisen when there are many people staying
at home. In such context, emerging technologies such as
Artificial Intelligence (AI) can play a key role in addressing
those challenges.

In this two-part paper, we present a comprehensive survey
of enabling and emerging technologies for social distanc-
ing. In Part I [1], we provide a comprehensive background
on social distancing and how wireless technologies can be
leveraged to enable, encourage, and enforce proper social
distancing implementation. In this Part II, we discuss various
emerging technologies, e.g., AI, thermal, computer vision,
ultrasound, and visible light, which have been introduced
recently in order to address many new issues related to social
distancing, e.g., contact tracing, quarantined people detection
and monitoring, and symptom prediction. For each technol-
ogy, we have provided an overview, examined the state-of-
the-art, and discussed how it can be utilized in different
social distancing scenarios as illustrated in Fig. 1. Finally,
some important open issues and challenges (e.g., privacy-
preserving, scheduling, and incentive mechanisms) of imple-
menting technologies for social distancing will be discussed.
Furthermore, potential solutions together with future research
directions are also highlighted and addressed.

As illustrated in Fig. 2, the rest of this paper is orga-
nized as follows. We first discuss emerging technologies for
social distancing in Section II. After that, we discuss open
issues and future research directions of technology-enabled
social distancing in Section III, and conclusions are given in
Section IV.

II. EMERGING TECHNOLOGIES FOR SOCIAL
DISTANCING
In addition to the wireless technologies, emerging technolo-
gies such as AI, computer vision, ultrasound, inertial sen-
sors, visible lights, and thermal also can all contribute to
facilitating social distancing. In this section, we categorize
those technologies into sensing intelligence and machine
intelligence technologies, provide a brief overview of each
technology, and discuss how they can be applied for different
social distancing scenarios.

A. SENSING INTELLIGENCE
1) ULTRASOUND
The ultrasound or ultrasonic positioning system (UPS) is usu-
ally used in the indoor environment with the accuracy of cen-
timeters [6]. The system includes ultrasonic beacons (UBs)
as tags or nodes attached to users and transceivers. Beacon
units broadcast periodically ultrasonic pulses and radio fre-
quency (RF) messages simultaneously with their unique ID
numbers. Based on these pulses and messages, the receiver’s
position can be determined by position calculation methods

such as trilateration or triangulation [7]. In comparison with
other RF-based ranging methods, the UPS does not require a
line of sight between the transmitter and the receiver, and it
also does not interfere with electromagnetic waves. However,
since the propagation of the ultrasound wave is limited, most
UPS applications for social distancing are only limited within
the indoor environment.

a: KEEPING DISTANCE
For this purpose, UPS can be used to position and notify
people. One of the first well knownUPS systems is Active Bat
(AB) [8] based on the time-of-flight of the ultrasonic pulse.
Typically, an AB system consists of an ultrasonic receiver
matrix located on the ceiling or wall, a transmitter attached to
each target, and a centralized computation system to calculate
the objects’ positions. As presented in [8], by using a receiver
matrix with 16 sensors, the AB system can achieve very high
positioning accuracy, i.e., less than 14 centimeters. However,
a limitation of this system is its high complexity, especially if
a large number of ultrasonic sensors are deployed.

Another limitation of the AB system is the privacy risk
for users since the location of users under the AB system is
calculated at the central server. To address that, the Cricket
(CK) system is proposed in [9] wherein the position calcu-
lation is executed at the receivers. Specifically, a receiver in
the CK system passively receives RF and ultrasound signals
from UBs located on the wall or ceiling, and then the receiver
calculates its position by itself based on UBs’ ID and coordi-
nates. Since the receivers do not transmit any signals, the pri-
vacy of users will not be compromised. Fig. 3 demonstrates
the two systems in the keeping distance application.

b: REAL-TIME MONITORING
In the context of social distancing, UPS can be an effective
solution for real-time monitoring scenarios, especially gaug-
ing the number of people in public buildings. In particular,
the main characteristic that makes UPS different from other
positioning technologies is confinement, i.e., the ultrasound
signal is confined within the same room as the UBs [7].
Among the other positioning technologies, only infrared tech-
nology shares the same characteristic. Nevertheless, infrared
signals are prone to interference from sunlight and other ther-
mal sources, and they also suffer from line-of-sight loss [7].
As a result, ultrasound is the most efficient technology for
binary positioning [7], i.e., determine if the object is in the
same room as the UBs or not. Thus, UPS can be particularly
useful in the social distancing scenarios where the exact posi-
tions of people are not as necessary as the number of people
inside a room (e.g., to limit the number of people). This
technology is more efficient because it needs a few reference
nodes (e.g., UBs) to determine the binary positions of people,
which can significantly reduce implementation costs.

c: AUTOMATION
Ultrasound can also be applied in the social distancing sce-
narios that utilize medical robots or UAV. Mobile robots,
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FIGURE 1. Application of technologies to different social distancing scenarios. Some technologies, e.g., AI and Thermal, can be applied to many
scenarios, whereas technologies such as Visible Light and Ultrasound are applicable to fewer scenarios. Scenarios from the same group have the same
color. The arrows that show the links from one technology to different scenarios have the same color.

FIGURE 2. The organization of this (Part II) paper.

especially medical robots, can play a key role in reducing
the physical contact rates between the healthcare staff (e.g.,
doctors and nurses) and the patients inside a hospital, thereby
maintaining a suitable social distancing level. In such sce-

narios, UPS can help to improve the navigation of medical
robots. In [11], a navigation system based on Wi-Fi
and ultrasound is proposed for indoor robot navigation.
To deal with the uncertainties which are very common in
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FIGURE 3. Ultrasound application for keeping distance using a) Cricket system [9], and b) Active Bat system [8]. The main
difference between the two systems is that the user’s position is calculated by the user device in Cricket and by a central
server in Active Bat.

crowded places like hospitals, the system employs a Partially
Observable Markov Decision Process, and a novel algorithm
is also introduced to minimize the calibration efforts.

In the social distancing context, besides outdoor applica-
tions, UAVs can also be employed to reduce the necessity of
human physical presence. For example, UAVs can be used
to deliver goods inside a building or to manage warehouse
inventory. However, most of the existing studies focus on
UAV navigation for the outdoor environment, which often
relies on GNSS for UAV positioning. Since GNSS’s accuracy
is low for the indoor environment, these methods cannot
be applied directly for UAV navigation inside a building.
To address that limitation, a navigation system is proposed
in [10], which utilizes ultrasound, inertial sensors, GNSS,
and cameras to provide precise (less than 10 cm) indoor
navigation for multiple UAVs.
Summary: Ultrasound can be applied in several social

distancing scenarios. In the keeping distance scenarios, UPS
systems such as AB and CK can be applied directly to localize
and notify people to keep a safe distance. Moreover, due
to its confinement characteristic, ultrasound is one of the
most efficient technology for binary positioning, which is
particularly useful for monitoring and gauging the number
of people inside the same room. In the automation scenarios,
ultrasound can facilitate UAVs and medical robots naviga-
tions, especially for the indoor environment.

2) INERTIAL SENSORS
In the context of social distancing, inertial-sensors-based
systems can be applied in distance keeping and automation
scenarios as illustrated in Fig. 4. For example, positioning

FIGURE 4. Inertial-sensors-based systems for several social distancing
scenarios. In the keeping distance scenario, the built-in inertial sensors of
smartphones can be utilized for user positioning. Based on this,
the smartphone can warn the user when there are other users or crowds
in close proximity. Inertial sensors can also help to localize and navigate
UAVs and medical robots.

applications utilizing built-in inertial sensors can be
developed for smartphones which can alert the users when
they get close to each other or a crowd. Moreover, inertial
sensors can be integrated into robots and vehicle positioning
systems, which can facilitate autonomous delivery services
and medical robot navigation. All of these scenarios can
contribute to reducing the physical contact rate between
people.

Inertial sensors consist of two special types of sensors,
namely gyroscopes and accelerometers, attached to an object
to measure its rotation and acceleration. Based on the mea-
sured rotation and acceleration data, the orientation and
position displacements of the object can be determined [95].
Because inertial sensors do not require any external reference
system to function, they have been one of the most common
sensors for dead reckoning navigation systems, i.e., cal-
culation of the current position is based on a previously
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determined position. Such navigation systems can provide
accurate positioning within a short time frame. However,
since the current position is determined based on the previ-
ously calculated positions, the errors accumulate over time,
i.e., integration drift. Therefore, Inertial-Navigation-System
(INS) is often used in combination with other positioning sys-
tems, e.g., GPS, to periodically reset the base position [95].

a: KEEPING DISTANCE
Traditionally, INS has been widely used for aviation, marine,
and land vehicle navigation. Recently, the ever-increasing
presence of smartphones has enabled many INS applications
for pedestrian positioning and navigation, which can support
social distancing scenarios. Moreover, INS is one of the few
technologies that can enable accurate pedestrian positioning
for the outdoor environment, especially when combined with
other outdoor positioning technologies such as GPS. In [96],
a smartphone-based positioning system is proposed. The sys-
tem makes use of a smartphone’s built-in sensors, including
gyroscopes, accelerometers, andmagnetometers (sensors that
measure magnetism), to calculate the smartphone’s position.
In particular, magnetometers are combined with gyroscopes
to improve accuracy of rotation measurements. This is done
by correlating their measurements via a novel algorithm
which uses four different thresholds to determine the weights
of the gyroscope and magnetometers measurements in the
correlation function. In [97], a wearable body sensors sys-
tem using inertial sensors is proposed to measure the lower
limb motion. The proposed system consists of three sensors
attached to different parts of the human lower limb tomeasure
its orientation, velocity, and position. Using this information
and the initial position of a person, the person’s location can
be tracked.

In [46], a novel indoor positioning system is developed
using Wi-Fi and INS technologies. In this system, INS is
utilized for the area where Wi-Fi coverage is limited, while
Wi-Fi positioning is used to compensate INS’s integration
drift. Another positioning system using inertial sensors and
Wi-Fi is presented in [98], where Wi-Fi fingerprinting tech-
nique is used to improve the accuracy of the dead reckoning
navigation. Because of the integration drift, a dead reckoning
navigation system needs to frequently update its position
by referencing to an external node. In the proposed system,
a Wi-Fi fingerprinting map is set up in advance and the dead
reckoning system can use the map to update its position.
Moreover, in [46], the authors propose using Kalman filter to
combine the measurement data from Wi-Fi and INS, which
can reduce the error to 1.53 meters.

Besides Wi-Fi, INS can be used in combination with other
positioning technologies. In [99] and [100], INS has been
combined with the UWB technology for pedestrian position-
ing and tracking. Generally, INS helps to reduce UWB’s high
implementation cost and complexity, while INS’s integration
drift can be compensated. Particularly, INS is employed to
compensate for the UWB’s low dynamic range and proneness
to external radio disturbances in [99]. To enable the combi-

nation, an information fusion technique using the extended
Kalman filter is proposed to fuse the measurement data
coming from both the INS and UWB sensors. The result
shows that the hybrid system can achieve better performance
than both the individual systems. In [100], the information
fusion problem between the INS and UWB is optimized to
minimize the uncertainties in the measurements. As a result,
the positioning accuracy can be significantly improved.

b: AUTOMATION
Besides pedestrian positioning, INS can also be applied
for social distancing scenarios involving autonomous vehi-
cles, e.g., medical robots and drone delivery. Generally, INS
has been commonly used for medical robot applications,
including surgeon assists, patient motion assists, and delivery
robots. In this section, we will only focus on the medical
and delivery robot applications for social distancing pur-
poses. In [101], a novel INS system is developed specifically
for mobile robot navigation. In addition, an error model is
proposed to increase the accuracy of the involved inertial
measurements. A Kalman filter is also proposed to precisely
estimate the velocity and orientation of the robot in the pres-
ence of noises. A novel data fusion algorithm, leveraging an
adaptive Kalman filter is presented in [102] for indoor robot
positioning based on an INS/UWB hybrid system.

Unlike INS for mobile robots that are mostly developed
for the indoor environment, INS for UAV focuses on outdoor
applications. Note that UAV navigation must also consider its
altitude, which adds more complexity. The authors of [103]
leverage inertial sensors and cameras to determine the UAV’s
position, velocity, and altitude. Particularly, the cameras
attached to the UAV capture the images of the surrounding
environment and send them to a control station. This station
will then process the images to determine the UAV’s pose in
regards to the surroundings. The pose’s data is then combined
with the inertial sensors data via a Kalman filter to deter-
mine the UAV’s position and velocity. Similarly, a system
combining inertial and vision sensors is developed in [104]
for UAV positioning and navigation. The system utilizes
two observers which have inertial and vision sensors. The
first observer calculates the orientation based on gyroscope
and vision sensors, and the second observer determines the
position and velocity based on data from the accelerometers
and vision sensors. The experimental results show that the
vision sensors measurements can be used to compensate for
the inertial sensors errors, thereby achieving a high accuracy
even with low-cost inertial sensors.
Summary: The omnipresence of smartphones with built-

in inertial sensors has opened many opportunities for devel-
oping positioning systems based on INS. For the distance
keeping scenarios, INS positioning systems, especially for
pedestrians, can play a vital role as they are readily available.
In the other scenarios such as medical robot navigation and
UAV delivery, INS-based techniques can help to increase the
efficiency (more accurate path, and lower traveling time) of
the existing navigation systems.
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3) VISIBLE LIGHT
The recent development in the light-emitting diodes (LEDs)
technology has enabled the use of existing light infras-
tructures for communication and localization purposes due
to attractive features of visible lights such as reliability,
robustness, and security [12]–[14]. Visible light communi-
cation (VLC) systems usually comprise two major compo-
nents, i.e., LED lights corresponding to transmitters to send
necessary information (e.g., user data and positioning infor-
mation) via visible lights and photodetectors (e.g., photodi-
odes) and imaging sensors (e.g., camera) playing the role of
receivers [2]. Due to the ubiquitous presence of LED lights,
VLC can be leveraged in many social distancing scenarios as
discussed below.

a: REAL-TIME MONITORING
Communication systems using visible light (e.g., LED-based
communications) can provide precise navigation and local-
ization solutions in indoor environments. Utilizing this tech-
nology, some applications can be implemented to support
social distancing such as tracking individuals who are being
quarantined, detecting and monitoring crowds in public
places as shown in Fig. 5(a).
Due to many advantages such as low cost and ease of

implementation, the VLC receiver using photodiodes can
be employed as a ‘‘tag’’ that is integrated into mobile tar-
gets such as trolleys/shopping carts, autonomous robots, etc.
People attached with these tags can perform self-positioning
based on the triangulation method so that they can avoid
crowded areas. Furthermore, the tags’ locations can be col-
lected by the authorities to monitor people in public areas.
Based on this location data, further actions can be carried out
such as warning people by varying the color temperature of
the lights in the crowded areas. It is worth noting that this
solution will not reveal any personal information of users
(e.g., customers) because it only requires communications
between VLC-based tags and light fixtures. However, most
VLC systems only provide half-duplex communications due
to the fact that LED lights operate in the role of transmit-
ters. Therefore, they should be combined with other wireless
technologies like Bluetooth [15], [16], and Infrared [17] to
enable an uplink communication with the server for location
information exchange. Moreover, to improve the accuracy
of positioning people in indoor environments using photo-
diodes, some advanced techniques can be used such as data
fusion of AOA and RSS methods proposed in [18] and the
AOA method using a multi-LED element lighting fixture
introduced in [19]. Onemain disadvantage of the photodiode-
based VLC systems is the need for hardware (i.e., the pho-
todiode receiver) mounted on smart trolleys/shopping carts
to receive light signals. Consequently, the system might fail
to detect the locations of people who do not carry them.
Nevertheless, pureLiFi company has recently invented a tiny
optical front end which can be integrated into smartphones
to take benefits of the photodiode receiver in high accuracy
VLC-based localization services [20].

The rapid development of smartphones has enabled VLC-
based applications on handheld devices such as indoor
localization and navigation applications (e.g., smart retail
systems [15], [16], [21]). These systems use front-facing
cameras of mobile phones to receive visible light signals
contained positioning information (e.g., the LED light’s ID
or location) from visible light beacons [22]. The captured
photos collected regularly by the front-facing camera are
sent to a cloud/fog server for image processing to alleviate
the computation on the phone. Then, the beacon’s ID and
coordinates can be extracted and sent back to the phone.
After that, the AoA algorithm is implemented to estimate
the location and orientation of the phone. An attractive use
case of the camera-based VLC systems [15], [16], [21] is
to assist users to quickly find specific products in shopping
malls or supermarkets. Thus, we can adopt this function
to implement tracking and monitoring crowds in public
places as well as assisting people in avoiding crowds in
a proactive manner. It is worth noting that this solution is
more convenient than using photodiodes since it uses front-
facing cameras of smartphones as the VLC receivers, thus
everyone using smartphones can be tracked. However, due
to continuous photo shooting, these positioning applications
are very energy-consuming, which is a major drawback of
camera-based VLC systems when they are used for tracking
people.

b: AUTOMATION
In public places, there is always a need for assistance in
specific circumstances (e.g., information or physical supports
for customers, older and disabled people). For instance, sup-
porting staff in supermarkets can assist customers in finding
products or help elder/disabled people to carry their goods.
Similar assistance scenarios can be seen in hospitals, banks,
and libraries. This results in an increase in close physi-
cal contacts between customers and assistants. Therefore,
autonomous assistance systems using VLC technology can
be employed to minimize the physical contacts as shown in
Fig. 5(a) and (b).
Besides the navigation purpose, the smart retail sys-

tems [15], [16] can also provide information assistance ser-
vices for shoppers. For example, the product description, sale
information, or other necessary information can be displayed
on the screen when the phone is under a certain LED light.
Another example is information assistance services in muse-
ums [23], [24]. This can help to reduce the number of close
physical contacts in these places.

Similar to the information assistance systems for reduc-
ing close physical contacts, autonomous robots using the
VLC technology for communication and localization can also
be deployed to assist people in certain circumstances, for
example, elderly-assistant robots, walking-assistant robots,
shopping-assistant robots, etc., [25], [26]. Moreover, visible
light signals do not cause any interference to RF signals,
and thus they can be effectively deployed in diverse indoor
environments such as hospitals, schools, and workplaces.
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FIGURE 5. Visible light communications supporting social distancing in several scenarios. In indoor environments, visible light sensors can be utilized for
real-time monitoring, information assistance system, and navigation application. For outdoor environments, visible light sensors can support traffic
control.

c: TRAFFIC CONTROL
In the context of social distancing, high demand traffic can
cause a large concentration of people in a certain area (e.g.,
city center). By adopting smart traffic light systems in [27],
[28], we can deploy an intelligent traffic controlling system
using the VLC technology to control large traffic flows as
illustrated in Fig. 5(c). That can help to reduce vehicle density
in public areas. The VLC technology provides a communi-
cation method between vehicles and the light infrastructure
(e.g., traffic lights, street lights). First, vehicles can send
their information (e.g., their IDs) to the light infrastructure
by using its headlights as transmitters, thus the system can
detect and monitor the traffic flow. However, in this case,
it is required that the light infrastructure must be equipped
with VLC receivers (e.g., traffic cameras or photodiodes).
Second, based on the awareness of the traffic, the system can
control the vehicles by sending instructions to guide them.
In this case, the system uses traffic lights, or street lights as
transmitters to send information and the vehicles use dash
cameras to receive the information. For example, the system
will notify them about hot zones that have a high density of
vehicles and do not allow them to enter, so that they can avoid
these zones.
Summary: The availability of smart retail systems is proof

of the superior performance and convenience of VLC tech-
nology compared to other RF technologies in high precision
indoor localization and navigation. By leveraging such com-
mercial approaches, we can deploy the cost-effective crowd

monitoring system on a large scale, not only in shopping
malls or hypermarkets but also in other public places, such
as airports, train stations, and hospitals, based on the existing
illuminating infrastructures. Building/facilities managers can
immediately alert or notify the users if they are in the middle
of a crowd (e.g., varying the color temperature of the lights in
the high-density zones). People can also take the initiative in
planning their move to the desired locations without encoun-
tering the crowds. On the other hand, assistance systems help
to reduce the number of staff/volunteers, nurses inside public
buildings; or limit the close contacts between them and cus-
tomers, patients. Moreover, the combination with other RF
technologies such as Bluetooth and Infrared also ensures the
location-based services are not interrupted when the smart-
phone is not being actively used by the user (e.g., the phone
is in the pocket). Last but not least, the VLC technology can
be a potential communication method between the intelli-
gent traffic controlling system and vehicles in the outdoor
environment. However, the main disadvantage of the VLC
technology is that interference from ambient and sun lights
have significant impacts on the visible light communication
channels [12], [14]. It results in poor performance of the RSS-
based positioning approaches and outdoor communications.

4) THERMAL
Thermal based positioning systems can be classified into two
main categories which are infrared positioning (IRP) systems
and thermal imaging camera (THC). Typical IRP systems
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such as [29], [31], [32] are low-cost, short-range (up to
10 meters) systems that use infrared (IR) signals to determine
the position of targets via AOAor TOAmeasurementmethod.
On the other hand, the THC, which constructs images from
the object’s heat emission, can operate at a larger range (up
to a few kilometers) [35]. Because of this difference, IRP and
THC can be applied in different social distancing scenarios
as discussed below.

a: KEEPING DISTANCE
In keeping distance scenarios, IRP systems such as Active
Badge [31], Firefly [33], and OPTOTRAK [32] can be uti-
lized. In the Active Badge, badges that periodically emit
unique IR signals are attached to the targets. Based on the dis-
tances from the fixed infrared sensors to the badges, the tar-
get’s position can be calculated. As a result, this application
can be useful to determine the distance between two people as
well as to identify crowds in indoor environments. The main
advantages of this solution are low cost and easy implemen-
tation. However, it requires users to wear tag devices to track
their locations.

To achieve a higher positioning accuracy, the Firefly [33]
and OPTOTRAK [32] systems can be implemented. These
systems contain infrared camera arrays and infrared trans-
mitter called markers. Due to the difference in setups (one
target is attached with one tag in Firefly and multiple tags in
OPTOTRAK), the Firefly system can accurately determine
the target’s 3D position, whereas the OPTOTRAK system
can capture the target’s movement. The main disadvantage of
these systems is that they are prone to interference from other
radiation sources such as sunlight and light bulbs. Combined
with their short-range, IRP is mostly applicable in small
rooms with poor-light conditions.

b: PHYSICAL CONTACT MONITORING
Since the Firefly and OPTOTRAK systems can accurately
capture movements, they can be useful for contact tracing
scenarios in social distancing. For example, markers can be
attached to the target’s body parts which are usually used in
physical contacts, e.g., hands for handshakes and body for
hugs. The movement of these body parts can then be captured
by the IR camera as illustrated in Fig. 6, and the recorded
data can be analyzed later to determine if there are close
contacts between the target and other people. Based on this
information, the contacts that the target made can be traced
later if necessary.

c: REAL-TIME MONITORING
For traffic monitoring in social distancing contexts, both IRP
and THC can be utilized, especially in poor-light conditions.
The authors in [34] propose a robust vehicle detector based on
the IRP under the condition to quantify traffic level and flow.
The collected data can be sent to assist the authorities in social
distancing monitoring. However, since IRP has a short range,
THC systems such as [37] can be a better choice in a larger
area with high vehicle density.

FIGURE 6. Physical contact monitoring by infrared system [33].
IR cameras can be utilized to detect and monitor physical contact among
people. If there is close contact between any two people, the event can
be recorded for future usage, e.g., contact tracing.

Due to its very high observation range (a few kilome-
ters) [36]–[38], THC is particularly effective for real-time
monitoring scenarios, such as public building monitoring,
detecting closure violation, and non-essential travel detec-
tion, which does not require high positioning accuracy. THC
systems such as those proposed in [29], [30] are efficient in
these scenarios since they are light-weight and can cover a
wide area with medium accuracy.

Another application of thermal technology is to detect
susceptible groups. Since the THCs measure heat emitted
from people or other objects, they can be used for checking
people’s temperature quickly from a far distance [39], [40].
Further, the THC system has the ability to detect slight tem-
perature differences with a resolution of 0.01 degrees [41].
Thus, it can be a good means to check health conditions
and sickness trends of patients. Moreover, the system can be
deployed in shopping centers to measure customers’ temper-
ature remotely. This can help to detect infection symptoms
early and also prevent the disease spread.
Summary: Thermal based positioning systems are helpful

in some social distancing scenarios, especially in poor-
light conditions. For short-range communication applica-
tions, the IRP is cost-effective and can be used for positioning
and tracing purposes. Whereas, some light-weight THC sys-
tems can be leveraged for real-time monitoring over long dis-
tances due to their high range. However, the high cost of THC
should be considered when implementing THCs in practice.

Table 1 provides a summary of the surveyed sensing intelli-
gence technologies. Generally, each technology has a special
characteristic that makes it a very effective solution for a
specific scenario. For example, ultrasound signals are con-
fined by walls, which enables low-cost ultrasonic positioning
system to efficiently monitor people in a small room. Fur-
thermore, since inertial sensors are built-in in most smart-
phones, they can be quickly utilized for keeping distance in
smartphone applications. In addition, visible light technology
can be leveraged for building information assistance sys-
tems which help to reduce human presence. Finally, thermal
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FIGURE 7. Thermal cameras used in susceptible group detection and traffic monitoring. Thermal cameras can be used to
check body temperature, thereby detecting susceptible groups and people with symptoms. For traffic monitoring, both
infrared positioning systems and thermal cameras can be utilized, especially in poor-light conditions, e.g., at night.

camera is the only technology that can detect people over
a large distance (a few kilometers) without the need for
attached devices, which makes it an ideal solution to detect
violation of quarantines or closures.

B. MACHINE INTELLIGENCE
1) COMPUTER VISION
Computer vision technology trains computers to interpret
and understand visual data such as digital images or videos.
Thanks to recent breakthroughs in AI (e.g., in pattern recog-
nition and deep learning), computer vision has enabled
computers to accurately identify and classify objects [48].
Such capabilities can play an important role in enabling,
encouraging, and enforcing social distancing. For exam-
ple, computer vision can turn surveillance cameras into
‘‘smart’’ cameras which can not only monitor people but
also can detect, recognize, and identify whether people
comply with social distancing requirements or not. In this
section, we discuss several social distancing scenarios where
computer vision technology can be leveraged, including
public place monitoring, and high-risk people (quaran-
tined people and people with symptoms) monitoring and
detection.

a: PUBLIC PLACE MONITORING
Despite government restrictions and recommendations about
social gathering, some people still do not comply with
them, which can cause the virus infection to the community.
In such context, human detection features in object detec-
tion [49], a major sub-field of computer vision, can help
to detect crowds in public areas through real-time images
from surveillance cameras. An example scenario is described
in Fig. 8(a). If the number of people in an area does not
meet the social distancing requirement (e.g., gathering above
10 people), the authorities can be notified to take appropriate
actions.

There are two main approaches to detect humans
from images in object detection namely region-based and

unified-based techniques. The former detects humans from
images in two stages including the region proposal and
the processing according to the regions [50]. Based on this
approach, several frameworks including Fast-RCNN [56] and
Faster-RCNN [57] are developed in combination with Con-
volution Neural Network (CNN) [54]. In [58], the authors
improve the Faster-RCNN by proposing the Mask Regions
with the CNN features (Mask RCNN) method which masks
the bounding box to detect the object with high accuracy
while adding a minor overhead to the Faster-RCNN. Mask
RCNN outperforms previous methods by simplifying the
training process and improving the accuracy in detecting
humans in the images for calculating the density of people
in a particular area.

Although the above region-based approach has high recog-
nition accuracy [58], it has high complexity, which is
unsuitable for devices with limited computational capacity.
To address this, the unified approach is more appropriate to
implement, which can reduce the computational complexity
by detecting humans from images with only one step. This
approach maps the pixels from the image to the bounding
box grid and class probabilities to detect humans or objects
in real-time. Following this direction, the You Only Look
Once (YOLO) method proposed in [59] can detect/predict
objects (even small ones) in real-time with high accuracy.
In addition, in [60], the authors propose the Single Shot
Multibox Detector (SSD) framework which uses a convo-
lution network on the image to calculate a feature map and
then predict the bounding box. Through experimental results,
they demonstrate that this method can detect objects faster
and more accurately than those of both YOLO and Faster-
RCNN. For public place monitoring, both YOLO [59] and
SSD [60] can be used to detect fast and accurately humans
from real-time images or videos of surveillance cameras.
After identifying people, we can use a real-time automatic
counter to count and identify whether the number of gather-
ing people is complying with social distancing requirements
or not.
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TABLE 1. Summary of sensing intelligence technologies applications to social distancing.

FIGURE 8. Computer vision technologies for social distancing: (a) human detection to identify the number of people in the public place [51], (b) face
recognition to identify (b1) the full face of isolated person, (b2) person with mask or person behind the mask [52], and (c) pose estimation to detect one
with coughing symptom [53].

b: DETECTING AND MONITORING QUARANTINED PEOPLE
To prevent the spread of the virus from an infected person
to others, the infected person or people who had physical
contact with them must be isolated at the restricted areas or
at home. For example, people who come back from highly
infected countries/regions of COVID-19 are often requested
to be quarantined or self-isolate for 14 days. Due to the lack of
facilities, most countries require these people to self-isolate at
home. In this case, the face recognition capability of computer
vision can help to enforce this requirement by analyzing the
images or videos from cameras to identify these people (i.e.,
to check whether they breach the self-isolation requirements
or not). If these people are detected in public, the authorities
can be notified to take appropriate actions.

Unlike object detection, the dataset including the full
face images of the isolated people needs to be built. The
face recognition system firstly learns from this dataset and
then analyzes the images from public surveillance cameras
to identify their appearances as in Fig. 8(b1). The authors
in [61] propose a framework named DeepFace using Deep
Neutral Network (DNN) which can detect with an accuracy
of 97.35% and 91.4% in Labeled Faces in the Wild (LFW)
and YouTube Faces (YTF) dataset, respectively. To improve

the accuracy in detecting humans from surveillance cameras,
some advanced techniques can be implemented such as [62],
[63] and [64].

To prevent the spread of infectious diseases such as
COVID-19, people are often required to wear masks in public
places, which necessitates approaches to recognize or identify
people with or without masks as illustrated in Fig. 8(b2).
For example, the cameras in front of a public building can
recognize and send warning messages (e.g., a beep sound)
to remind the person who does not wear a mask when he/she
intends to get into the building. This idea is introduced in [70]
by using CNN to detect people who do not wear the masks.
However, this work is just at the first step, which still requires
much more efforts to demonstrate the effectiveness as well as
improve the accuracy.

c: SYMPTOMS DETECTION AND MONITORING
After a few days of being infected with the virus, the infected
person may have some symptoms such as coughing or sneez-
ing. To minimize spreading the virus to others, it would be
very helpful if we can detect these symptoms from people in
public and inform them or the authorities. The idea here is
similar to that of using thermal imaging cameras at airports
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or train stations. Specifically, detecting human behaviors,
motion, and pose in computer vision can play a pivotal
role [65]. Pose estimation captures a person with different
parts (as illustrated in Fig. 8(c)) then detects human behaviors
by studying the parts’ movements and their correlation. For
example, a coughing person in Fig. 8(c) usually moves his
hand near his head, and his head would have a vibration.

Recognition of human behaviors from surveillance cam-
eras is a challenging problem because the same behaviors
may have different implications, depending on the relation-
ship with the context and other movements [66]. The recent
advances in AI/ML are instrumental in correlating different
movements/parts to interpret the associated behavior. In [67]
the authors propose to use CNN [54] to enhance the accuracy
of the model of the interaction between different body parts.
In addition, the authors in [68] introduce several methods
to detect body parts of multiple people in 2D images, and
the authors in [69] propose methods to estimate 3D poses
from matching of 2D pose estimation with a 3D pose library.
These works can be further developed for future studies to
detect people with symptoms of the disease such as coughing
or sneezing in real-time. To improve the accuracy of the
symptom detection in social distancing, computer vision-
based behavior detection methods can be combined with
other technologies, e.g., thermal imaging.

d: INFECTED MOVEMENT DATA
To prevent the spread of the virus, tracing the path of an
infected person plays an important role in finding out the
people who were in the same place as the infected person. For
this purpose, computer vision technology can not only detect
infected people by facial recognition but also contribute to
the positioning process. In [43], the movement of people is
determined by analyzing the key point of transition frames
captured from smartphone cameras. This method can draw
the trajectory of movements and the location with an accuracy
around two meters. In [44], the authors propose to combine
the human detection techniques of computer vision with dig-
ital map information to improve the accuracy. In this study,
the user path from cameras is mapped to the digital map
which has the GPS coordinates. This method can achieve a
very high accuracy within two meters. In another approach,
the authors in [45] propose to use both smartphones’ cameras
and inertial-sensor-based systems to accurately localize tar-
gets (with only 6.9 cm error). This approach uses the fusion
of keypoints and squared planar markers to enhance the
accuracy of cameras to compensate for the errors of inertial
sensors.

e: KEEPING DISTANCE
Computer vision can also be very helpful to support people
in keeping distance to/from the crowds. In [42], the authors
develop an on-device machine-learning-based system lever-
aging radar sensors and cameras of a smartphone. When
the radar sensor detects the surrounding moving objects,
the smartphone camera can be utilized to capture its

surrounding environment. Taking into account the recorded
data, the smartphone can train the data using machine learn-
ing algorithms to determine the existence of nearby people
and its distance from those people with respect to the social
distancing requirements. We can also use a smartphone to
estimate the distance between the mobile user and other
people using radar sensors and cameras along with machine
learning algorithms.
Summary:Computer vision can be utilized in several social

distancing scenarios, especially the ones that require people
monitoring and detection. Particularly, computer vision is the
only method that can differentiate between people and iden-
tify complex features such asmasks and symptoms. To further
improve the effectiveness of computer vision in the social
distancing context, future research should focus on increasing
the accuracy and reducing the complexity of computer vision
methods, so that they can be integrated into existing systems
such as surveillance cameras.

2) ARTIFICIAL INTELLIGENCE
Over the last 10 years, we have witnessed numerous appli-
cations of AI in many aspects of our lives such as health-
care, automotive, economics, and computer networks [106].
The outstanding feature of AI technologies is the ability to
automatically ‘‘learn’’ useful information from the obtained
data. This leads to more intelligent automation, operating
cost reduction as well as the great compatibility to adapt
to changing environments. For that, AI (and its underlying
machine learning algorithms) can also play a key role in social
distancing, especially in modern lives, with many practical
applications, as discussed below.

a: DISTANCE TO/FROM CROWDS AND
CONTACT TRACING
Applications of machine learning to users’ location data
allow us to effectively monitor the distance between people
and trace the close contacts of infected people. In [150],
the authors analyze the accuracy of a user’s location pre-
diction based on his/her friends’ location datasets. In this
case, a temporal-spatial Bayesianmodel is developed to select
influential friends considering their influence levels to the
user. Thus, the service provider can predict the exact location
of a mobile user by using the temporal-spatial Bayesian
model. Then, when the user is too close to other mobile
users/people at crowded public places or his/her friends when
they go in a group as illustrated in Fig. 9(a), his/her smart-
phone can alert to keep a safe distance. In addition, using
the list of influential friends based on their ranks, the ser-
vice provider can utilize it for the contact tracing purpose
when the mobile user or one of his/her influential friends
in the list gets infected. Moreover, the local-experts-finding
scheme proposed in [151] can be utilized to find the local
social media users of a certain area. Based on this, informa-
tion such as current crowds locations can be extracted more
efficiently.

VOLUME 8, 2020 154219



C. T. Nguyen et al.: Comprehensive Survey of Enabling and Emerging Technologies for Social Distancing—Part II

FIGURE 9. Application of artificial intelligence to several social distancing scenarios. By predicting people location, AI can be utilized to warn
people to avoid potential crowded places in (a) distance/to from crowds scenario, alert people about infected locations in (b) infected movement
prediction scenario, detect quarantine violation in (c) quarantined/At-Risk people location prediction. AI can also be leveraged to warn people or
propose alternate routes in (d) people/traffic density prediction. Using data from audio and image sensors, AI can predict potential infected places
before the real disease occurs in (e) sickness trend prediction.

b: INFECTED MOVEMENT PREDICTION
Another application of machine learning is to predict infected
people movement from one location to another one and hence
can potentially predict the geographic movement of the dis-
ease. The prediction is particularly crucial as infected people
may travel to various places and can accidentally infect others
before know that they carry the disease. In [152], the authors
introduce a smartphone-based location recognition and pre-
diction model to detect the current location and predict the
destination of mobile users. In particular, the location recog-
nition is implemented using the combination of k-nearest
neighbor and decision tree learning algorithms, and the des-
tination prediction is realized using hidden Markov mod-
els. Given the history of infected people movement, we can
adopt the above model to recognize and predict the potential
geographic movement of the disease. Using the information,
people can be advised to stay away from the possible infected
locations through alerts from their smartphones as illustrated
in Fig. 9(b).

c: QUARANTINED/At-RISK PEOPLE LOCATION
PREDICTION
The current location prediction of quarantined people, e.g.,
infected people, and at-risk people, e.g., sick and elder peo-
ple, is very important to monitor whether they currently
stay at the self-quarantined and self-protection areas, e.g.,
their homes, or not. To this end, a machine-learning-based
location prediction approach can help to detect the current
position of those people in a certain area. In [153], the authors
apply the auto-encoder neural networks and one-class sup-
port vector machines to verify whether a user is within a
specific area or not. Considering various channel models,
i.e., path-loss, shadowing, and fading, the proposed solu-
tions can achieve Neyman-Pearson optimal performance by
observing the probability ofmiss-detections and false-alarms.
The authors in [154] propose a novel localization system
leveraging the federated learning to allow mobile users to
collaboratively provide accurate location services without
revealing mobile users’ private location. As such, the authors
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utilize deep neural networks with the Gaussian process to
accurately predict the desired location of the mobile users.
As a result, we can apply the proposed solutions to detect if
infected people or at-risk people currently move away from
their homes as illustrated in Fig. 9(c). Moreover, we can
utilize the proposed solutions to determine the movement
frequency of the self-isolated people outside the protection
facility. Using the movement frequency history, the author-
ities can enforce them to stay at the protection facility for
further infection prevention.

d: PEOPLE/TRAFFIC DENSITY PREDICTION
Predicting the density of people or the number of people in
public places allows us to efficiently schedule or guide people
to stay away or refrain from coming to soon-to-be over-
crowded places. For example, when the predicted number of
people in a certain place almost reaches a predefined thresh-
old (e.g., according to the social distancing requirement),
the service provider can broadcast a local notification to
incoming people via cellular networks, aiming at encouraging
them to move to another area. In [155], the authors adopt
advanced machine-learning-based approaches for edge net-
works to predict the number of mobile users within base sta-
tions’ coverages. Particularly, the framework first groups the
base stations into clusters according to their network data and
deployment locations. Then, using various machine learning
algorithms, e.g., the Bayesian ridge regressor, the Gaussian
process regressor, and the random forest regressor, we can
predict the number of mobile users within their network cov-
erages. From the preceding architecture, one can utilizeWi-Fi
hotspots and cluster them based on their locations. By doing
so, we can predict the number of people within each cluster’s
coverage. Using the same architecture, we can extend the
application to predict the traffic level on the roads. Specifi-
cally, upon predicting the number of vehicular users on the
roads, we guide the drivers to choose particular routes to
satisfy the social distancing requirements, e.g., suggest alter-
native routes to avoid crowded areas. In [156], the authors
introduce a UAV-enabled intelligent transportation system to
predict road traffic conditions using the combination of con-
volutional and recurrent neural networks. In particular, sensor
cameras on the UAVs are utilized to capture the current road
traffic. By using this information, the UAVs can then predict
the road traffic conditions using the aforementioned deep
learning methods. Thus, from the traffic prediction, the UAVs
can work as mobile road-side units to orchestrate road traffic
for over-crowding avoidance by informing the upcoming road
traffic conditions to vehicular users via cellular networks
accordingly (Fig. 9(d)).

e: SICKNESS TREND PREDICTION
Machine-learning-based location prediction method is also
of importance to predict the sickness trend in specific areas.
This sickness trend prediction can be used to inform peo-
ple to stay safe from possible infected places. For exam-
ple, the work in [157] designs a contactless surveillance

framework, i.e., FluSense, to predict the influenza-like dis-
ease 7-14 days before the real disease occurs in the hos-
pital waiting areas. In particular, a set of real-time sensors
including a microphone array to detect normal speech/cough
sounds and a thermal camera to detect crowd density are
embedded into an edge computing platform. Considering
millions of non-speech audio samples and hundred thousands
of thermal images for audio and image recognition models,
the proposed framework can accurately predict the number of
daily influenza-like patients with Pearson correlation coef-
ficient of 0.95. The prediction model from this work can
be correlated/combined with the localized medical/health
information (e.g., from local hospitals/clinics) to further
improve the prediction accuracy as shown in Fig. 9(e).We can
then inform the local mobile users about the sickness trend
prediction to avoid the potential areas where many influenza-
like patients exist.

f: SYMPTOM DETECTION AND MONITORING
Coughing is one of the most common and detectable symp-
toms of influenza pandemics. In the presence of a pandemic,
the early detection of such symptoms can play a key role in
limiting the disease spread from the infected to the suscep-
tible population. For example, if a coughing person can be
detected and identified in public places, that person and the
people in close proximity can be tested for the disease.

In several studies, such as [158]–[161], AI technologies are
leveraged to identify the cough patterns in audio recordings
collected from microphones or acoustic sensors. In [158],
audio signals are analyzed using recurrent and convolutional
neural networks to detect coughs with high accuracy (up
to 92%). Similarly, a hidden Markov model is proposed
in [159] to detect cough from continuous audio recordings.
In addition to audio signals, signals from motion sensors are
also analyzed in [160] by a novel classification algorithm.
However, a common limitation of these approaches is that
they require the sensors to be attached to the person, which is
not always possible in social distancing scenarios. To address
this problem, a cough detection system is proposed in [161].
This system utilizes a wireless acoustic sensors network con-
nected to a central server for both cough detection and local-
ization. In particular, when a sound is detected, the sensors
first localize the sound source by the AOA technique. Then,
the sensors send the measured sound signals to the central
server for cough identification using a novel classification
algorithm. In the social distancing context, this system can
be applied directly to monitor and detect coughing people
in public places. Nevertheless, a limitation of this system is
that the localization and measurement errors increase signif-
icantly when the sound source is too far from the sensors.
Besides coughs, other physiological metrics such as cardio-
vascular activity, body temperature, and respiration can also
be meaningful indicators. Especially, based on those metrics,
an infected case can be potentially detected before clinical
symptoms, e.g., fever, occur [162]. However, early detection
algorithms need to be developed specifically for COVID-19.

VOLUME 8, 2020 154221



C. T. Nguyen et al.: Comprehensive Survey of Enabling and Emerging Technologies for Social Distancing—Part II

Summary: Various AI technologies can be leveraged to
facilitate social distancing implementations, especially in the
scenarios that require modeling and prediction. In particular,
AI technology can help to predict people’s locations, traffic
density, and sickness trends. Moreover, AI-based classifica-
tions algorithms can be utilized to detect symptoms such as
coughs in public areas.

III. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS
In this section, we discuss the open issues of social distanc-
ing implementation such as security and privacy concerns,
social distancing encouragement, work-from-home, and the
increased demands in healthcare appointments, home health-
care services, and online services. To addressed these issues,
potential solutions are also presented.

A. SECURITY AND PRIVACY-PRESERVING IN SOCIAL
DISTANCING
Most aforementioned social distancing scenarios (see Table 1
for more details) call for people’s private information, to a
different extent, ranging from their face/appearance to loca-
tion, travel records, or health condition/data. These data,
if not protected properly, attract cyber attackers and can
turn users into victims of financial, criminal frauds, and
privacy violation [125]. Users’ data like health conditions
can also adversely impact people’s employment opportunities
or insurance policy. Given that, to enable technology-based
social distancing, it is critical to develop privacy-preserving
and cybersecurity solutions to ensure that users’ private data
are properly used and protected.

The general principle of users’ privacy-preserving is
to keep each individual user’s sensitive information pri-
vate when the available data are being publicly accessed.
To do so, data privacy-preserving mechanisms including
data anonymization, randomization, and aggregation can
be utilized [116]. For example, Apple, Google, and Face-
book have developed people mobility trend reports while
preserving users’ privacy during the COVID-19 outbreak.
In particular, Apple utilizes random and rotating identi-
fiers to preserve mobile users’ movements privacy [119].
Meanwhile, Google aggregates and uses anonymized datasets
from mobile users who turn on their location history set-
tings in their Android smartphones. In this case, a differ-
ential privacy approach is applied by adding random noise
to the location dataset with the aim to mask individual
identification of a mobile user [117]. Similarly, Facebook
utilizes aggregated and anonymized user mobility datasets
and maps to determine the mobility trend in certain areas
including the social connectedness intensity among nearby
locations [118]. In addition to the Apple’s, Google’s, and
Facebook’s latest privacy-preserving implementation, in the
following, wewill thoroughly discuss how the latest advances
in security and privacy-preserving techniques can help to
facilitate social distancing without compromising users’
interest/privacy.

1) LOCATION INFORMATION PROTECTION
To protect the exact location/trajectory information of par-
ticipating mobile users in social distancing, some advanced
location-based privacy protection methods can be adopted.
Specifically, we can anonymize/randomize/obfuscate/perturb
the exact location of each mobile user to avoid malicious
attacks from the attackers using the following mechanisms.
For example, the authors in [126] develop a privacy-
preserving location-based framework to anonymize
spatio-temporal trajectory datasets utilizing machine-
learning-based anonymization (MLA). In this case, the frame-
work applies the K -means machine learning algorithm to
cluster the trajectories from real-world GPS datasets and
ensure theK -anonymity for high-sensitive datasets. Using the
K -anonymity [127], [128], the framework can collect loca-
tion information from K mobile users within a cloaking
region, i.e., the region where the mobile users’ exact locations
are hidden [129], [130]. In [131], the use of K -anonymity
is extended into a continuous network location privacy
anonymity, i.e., KDT -anonymity, which not only considers
the average anonymity size K , but also takes the average dis-
tance deviationD and the anonymity duration T into account.
Leveraging those three metrics, the mobile users under real-
istic vehicle mobility conditions can control the changes of
anonymity and distance deviation magnitudes over time.

The authors of [132] propose a mutually obfuscating paths
method which allows the vehicles to securely update accurate
real-time location to a location-based service server in the
vehicular network. In this case, the vehicles first hide their
IP addresses due to the default network address translation
operated by mobile Internet service providers. Then, they
generate fake path segments that separate from the vehicles’
actual paths to prevent the location-based service server
from tracking the vehicles. Exploiting dedicated short-range
communications (DSRC) among vehicles and road naviga-
tion information from the GPS, the vehicles can mutually
generate made-up location updates with each other when
they communicate with the location-based service server
(to obtain spatio-temporal-related information). In [133],
vehicles which use location-based services can dynamically
update virtual locations in real-time with respect to the rela-
tive locations of current nearby vehicles. This aims to provide
deceptive information about the driving routes to attackers,
thereby enhancing location privacy protection.

In addition to the anonymization and obfuscating meth-
ods, randomization and perturbation are the methods that
can be employed to protect user’s location privacy in social
distancing scenarios. In [134], a location privacy-preserving
method leveraging spatio-temporal events of mobile users
in continuous location-based services, e.g., office visita-
tion, is investigated. Specifically, an ε-differential privacy
is designed to protect spatio-temporal events against attack-
ers by adding random noise to the event data [137]–[139].
In [140], the authors present a location privacy protection
mechanism using data perturbation for smart health systems
in hospitals. In particular, instead of reporting the patient’s
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FIGURE 10. Location-based privacy preserving for social distancing scenarios. In (a) location information protection, the exact location of a vehicle can
be obfuscated to protect people’s privacy. To protect (b) personal identity, a user can exchange its identity with nearby trusted users in each location, and
thus that user cannot be identified by the attackers. For (c) health-related information protection, the health information can be anonymized.

real locations directly, a processing unit attached to a patient’s
body can adaptively produce perturbed locations, i.e., the rel-
ative change between different locations of the patient. In this
case, the system considers the patient’s travel directions and
computes the distance between the patient’s current locations
and the patient’s sensitive locations (i.e., patient’s predefined
locations which he/she does not want to reveal to anyone, e.g.,
patient’s treating room). Using this dynamic location pertur-
bation, the need for a trusted third party to store real locations
can be removed. Leveraging the aforementioned methods,
we can also prevent the service provider from accessing
mobile users’ and vehicles’ exact locations/trajectories/paths
when they implement social distancing for crowd/traffic
density and movement detection. Specifically, a platoon
of mobile users/vehicles in a certain area can collaborate
together to mix their real locations/trajectories/paths anony-
mously (Fig. 10(a)). In this way, the service provider will
only obtain the aggregated location/trajectory/path informa-
tion of the platoon instead of each individual’s exact loca-
tion/trajectory/path for its location privacy.

2) PERSONAL IDENTITY PROTECTION
In addition to protecting mobile users’ location-related
information, preserving their personal identities is of impor-
tance to improve users’ acceptance of the latest technolo-
gies to social distancing. Specifically, we can exchange or
anonymize personal identities among trusted mobile users to
avoid the attackers identifying the actual identity of each indi-
vidual user. In [141], the authors develop a pseudo-identity
exchanging protocol to swap/exchange identity information
among mobile users when they are at the same sensitive
locations, e.g., hospital and residential areas. In particular,
when a mobile user receives another trusted user’s identity
and private key, themobile user will verify if the encryption of
another user’s identity hash function and public key is equal
to the encryption of the received private key. If that condition

holds, the mobile user will change his/her identity with that
user’s identity and vice versa.

Another method to protect personal identity in social dis-
tancing scenarios is individual information privacy protec-
tion through indirect- or proxy-request as proposed in [142].
In particular, instead of directly submitting a request to
the server, a mobile user can have his/her social friends
through the available social network resources, i.e., trusted
social media, to distribute his/her request anonymously to
the server. The request result can be returned to his/her
social friends and then forwarded to the requested mobile
user, thereby preserving the requested mobile user’s iden-
tity. In fact, there may exist some malicious friends who
expose the identity of the mobile user. Therefore, the authors
in [143] investigate a user-defined privacy-sharing framework
on social networks to choose his/her particular friends who
are trusted to obtain the mobile user’s identity information.
In this case, the mobile user only shares his/her identity
information with the particular friends whose pseudonyms
match the mobile user’s identity through the authorized
access control. Using the same approaches from the above
works, we can use local wireless connections, e.g., Bluetooth
and Wi-Fi Direct, to anonymously exchange actual location
information in a mobile user group, i.e., between a mobile
user and his/her trusted nearbymobile users, in an ad hocway.
As shown in Fig. 10(b), when the service provider requires
to collect location-related information for the current crowd
density detection, a representative mobile user from the group
can send the group’s anonymous location information to the
service provider, aiming at preserving the personal identity of
each mobile user in the group.

Moreover, Apple and Google have recently introduced a
key schedule for contact tracing to ensure the privacy of
users [3]. Specifically, there are three types of key: (i) tracing
key, (ii) daily tracing key, and (iii) rolling proximity identifier.
The tracing key is a 32-byte string that is generated by using
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a cryptographic random number generator when the app is
enabled on the device. The tracing key is securely stored
on the device. The daily tracing key is generated for every
24-hour window by using the SHA-256 hash function with
the tracing key. The rolling proximity identifier is a privacy-
preserving identifier which is sent in Bluetooth advertise-
ments. This identifier is generated by using the SHA-256 hash
function with the daily tracing key. Each time the Bluetooth
MAC address is changed, the app can derive a new identifier.
When a positive case is diagnosed, its daily tracing keys are
uploaded to a server. This server then distributes them to the
clients who use the app. Based on this information, each of
the clients will be able to derive the sequence of the rolling
proximity identifiers that were broadcasted from the user who
tested positive. In this way, the privacy of the users can be
protected because, without the daily tracing key, one cannot
obtain the user’s rolling proximity identifier. In addition,
the server operator also cannot track the user’s location or
which users have been in proximity.

Similarly, several solutions have been proposed in [4], [5].
The key idea of these solutions is generating a unique iden-
tifier and broadcasting it to nearby devices. In particular,
PACT [4] regularly (every few seconds) emits a data string,
called chirps, generated by cryptographic techniques based
on the current time and the current seed of the user to ensure
the privacy. Similarly, in [5], the identifier EphID (called
ephemeral ID) is created as follows:

EphID = PRG
(
PRF(SKt , broadcast key)

)
, (1)

where PRF is a pseudo-random function (e.g., SHA-256),
broadcast key is a fixed and public string, and PRG is a stream
cipher (e.g., AES in counter mode). SKt is the secret key of
each user during day t which is computed as follows:

SKt = H (SKt−1), (2)

where H is a cryptographic hash function. Upon receiving
the identifier, other nearby devices will keep it as a log. If a
user is diagnosed with the disease, other users who may have
encountered the infected person will receive a warning of a
potential contact.

With outstanding performance in data integrity, decen-
tralization, and privacy-preserving, blockchain technology
can be an effective solution to preserve privacy to enable
technology-based social distancing scenarios. A blockchain
is a distributed database shared among users in a decentral-
ized network. This decentralized nature of blockchain ensures
its immutability property, i.e., the data stored within cannot
be altered without the consensus of the majority of network
users [147]. Another advantage of blockchain technology
is that the users’ anonymity is ensured due to the public-
private keys pair mechanism [148]. As a result, blockchain
technology can effectively address the personal identity issue
in social distancing scenarios where people have to share their
movement and location information but not their exact iden-
tities. For example, in the infected movement data scenario,
we only need to know the movement path of a person, and

whether or not that person is infected. In this case, the person
anonymity can be ensured with the public-private keys pair
mechanism, since there is no way to link the public key to
that person’s true identity.

3) HEALTH-RELATED INFORMATION PROTECTION
To monitor the sickness trend in a certain place, e.g., the hos-
pital, for the social distancing purpose (i.e., to inform the
upcomingmobile users not to enter a high-risk area/building),
the health-related condition information of visiting mobile
users has to be shared to provide reliable learning dataset.
To protect this highly sensitive information, the authors
in [144] propose a differential privacy-based protection
approach to preserve the electrocardiogram big data by uti-
lizing body sensor networks. In particular, non-static noises
are applied to produce sufficient interference along with
the electrocardiogram data, thereby preventing the malicious
attackers to point out the real electrocardiogram data.

To provide secure health-related information access for
authenticated users, a dynamic privacy-preserving approach
leveraging the biometric authentication process is introduced
in [145]. Specifically, when a user wants to access themedical
server containing his/her health condition, a secure biometric
identification at the server for the user’s validity is employed
where the exact value of his/her biometric template remains
unknown to the server. In this way, the personal identity of the
authenticated user can be preserved. To further enhance the
anonymity of his/her medical information, the random num-
ber that is used to protect the biometric template is updated
after every successful login. Then, the authors in [146] pro-
pose a secure anonymous authentication model for wireless
body area networks (WBANs). Specifically, this framework
enables both patients and authorized medical professionals to
securely and anonymously examine their legitimacies prior
to exchanging biomedical information in the WBAN sys-
tems. Motivated by the above works, we can utilize mobile
devices, secure service provider, and the aforementioned
privacy-preserving approaches to anonymously collect peo-
ple’s health condition information for illness monitoring in
the hospital/medical center (Fig. 10(c)). In this way, the social
distancing through monitoring the sickness trend can be
implemented efficiently while preserving the sensitive infor-
mation of the people in the illness areas.

B. REAL-TIME SCHEDULING AND OPTIMIZATION
In the context of social distancing, real-time scheduling and
optimization techniques can play a key role in preventing
an excessive number of people at a given place (e.g., super-
markets, hospitals) while maintaining a reasonable Quality-
of-Service level. Fig. 11 illustrates several social distancing
scenarios where scheduling and optimization techniques can
be applied. In particular, proper scheduling can help reduce
the number of necessary employees at the workplace and the
number of patients coming to the hospital, thereby minimiz-
ing the physical contacts among people. Moreover, traffic
scheduling can help to reduce the peak number of vehicles
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FIGURE 11. Scheduling and optimization for several social distancing
scenarios including reducing the simultaneous presence of employees
(workforce scheduling), patients (healthcare appointment and home
healthcare scheduling), and traffic (traffic control). Moreover, network
resources can be optimized to meet surging demands on online services
while more people are working remotely from home.

and pedestrians, and network resource optimization [71]
(e.g., network/resource slicing) can meet surging demands
on online services while more people are working remotely
from home.

1) WORKFORCE SCHEDULING
Workforce scheduling can help to limit the number of peo-
ple at the workplaces while ensuring the necessary work
is done. While working from home is encouraged in social
distancing, some essential work requires people to be present
at the workplace for important tasks (e.g., health, trans-
portation and manufacturing). Moreover, different types of
tasks impose various constraints such as due date (time con-
straints), dependence among tasks (precedence constraints),
skill requirements (skill constraints), and limited resources
usage (resource constraints) which further complicate the
scheduling problem. For such scenarios, workforce schedul-
ing techniques can be utilized to optimally align and reduce
the number of required employees to practice social distanc-
ing. In [72], a novel three-phase algorithm is proposed for
workforce scheduling to optimize the operational cost and
service level simultaneously. Another Genetic-Algorithm-
based hybrid approach is presented in [73], which optimizes
the schedules of the workforce according to multiple objec-
tives including urgency, skill considerations, and workload

balance. Similarly, in [74], a Mixed-Integer-Programming-
based approach is developed to minimize the operational cost
with consideration of skill constraints. It is worth noting that
the main objective of these approaches is to minimize cost,
which is not the highest priority in the context of social
distancing. In [75], [76], and [77], several methods are pro-
posed to optimize the workforce schedules with consideration
of rotating shifts, which indirectly reduce the number of
employees to a certain extent. Nevertheless, the main objec-
tive of these approaches is reducing costs. Therefore, devel-
oping techniques to reduce the physical contacts or distance
among employees at the workplace is critical for workforce
scheduling in social distancing scenarios.

2) MEDICAL/HEALTH APPOINTMENT SCHEDULING
Besides workforce planning, scheduling techniques can also
help to optimize healthcare services, especially healthcare
appointments and home healthcare services, thereby decreas-
ing unnecessary traffic and the number of patients com-
ing to hospitals. Several approaches have been proposed
to effectively schedule appointments. In particular, a local
search algorithm is proposed in [78] to minimize patient
waiting times, doctor idle times, and tardiness (lateness).
Moreover, a two-stage bounding approach and a heuristic are
presented in [79] and [81], respectively. However, a common
limitation of these techniques is that they do not take into
account the uncertainties in the duration of the appointments
and the possibility that the patient will not come to the
scheduled appointment. To address that, the uncertainty in
the processing times (e.g., of surgeries) is considered by a
conic optimization approach in [80]. Similarly, a multistage
stochastic linear program is developed in [82] to minimize
patient waiting times and overtime, which takes into account
the unpredictable appointment duration and unplanned can-
cellations. Although there are many effective approaches to
optimize appointment scheduling, the open issue is to develop
techniques that specifically minimize or control the number
of patients simultaneously coming to the hospitals tomaintain
a suitable level of social distancing, similar to that of the
workforce scheduling scenario.

3) HOME HEALTHCARE SCHEDULING
Similar to appointment scheduling, home healthcare ser-
vices (HHS) can help to reduce the pressure on hospi-
tals and traffic in the social distancing context. In [83],
a multi-heuristics approach is proposed for HHS schedul-
ing to minimize the total traveling times of HHS staff.
An extended problem is presented in [84], where the objective
also includes minimizing the tardiness and additional skills
and time constraints are considered. For this problem, local
search-based heuristics are proposed in the paper. Another
local search-based heuristic is proposed in [85] for HHS
scheduling with the objective to minimize traveling times and
optimize Quality-of-Service while considering workload and
time constraints. In [86], a Genetic-Algorithm-based hybrid
approach is proposed for HHS scheduling with uncertainty
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in patient’s demands to minimize transportation costs. Also
addressing uncertainties, a branch-and-price algorithm is
proposed in [87] to minimize the traveling costs and delay of
services while considering stochastic service times. Unlike
in workforce planning and appointment scheduling, HHS
scheduling techniques can be more effectively applied to
social distancing scenarios because they can minimize the
traveling distances while ensuring Quality-of-Service.

4) TRAFFIC CONTROL
Scheduling techniques have also been applied for traffic con-
trol. In social distancing scenarios, scheduling techniques
can help to regulate the traffic level, especially the num-
ber of pedestrians. In [88], a novel scheduling algorithm
is developed for traffic control, considering both vehicles
and pedestrians, to minimize the delays. Similarly, a macro-
scopic model and a scheduling algorithm are proposed for
traffic control, which jointly minimize both the pedestrians
and vehicle delays in [89]. Another scheduling approach is
proposed in [90] that considers both pedestrians and vehi-
cles. Different from the previously mentioned approaches,
this approach only focuses on minimizing pedestrian delay.
Although there is a vast literature on traffic scheduling tech-
niques, the social distancing implications have not been taken
into account. For example, to maintain social distancing,
a more meaningful objective would be to reduce/constrain
the peak number of pedestrians on the street at the
same time.

5) ONLINE SERVICES OPTIMIZATION
When social distancing measures are implemented, more
people will be staying at home e.g., working from home.
Physical meetings/gatherings will move to virtual platforms,
e.g., webinars. That results in much higher Internet traffic and
corresponding virtual service demands (e.g., video streaming,
broadcasting, and contents delivery). Therefore, optimizing
online services delivery is a challenging issue in the social
distancing context. Fortunately, online services optimization
is a well-studied topic with a substantial body of supporting
literature.

For example, in [91], a novel algorithm is proposed to opti-
mize the contents delivery process in a CDN semi-federation
system. In particular, the algorithm optimally allocates the
content provider’s demand to multiple Content Delivery Net-
works (CDNs) in the federation. The results show that the
latency can be reduced by 20% during peak hours. Another
technique to reduce the delay and network congestion is edge-
caching, which brings the contents closer to the network
users (e.g., [92]). In [93], the performance of two edge-
caching strategies, i.e., coded and uncoded caching, are ana-
lyzed. Moreover, two optimization algorithms are developed
to minimize the content delivery times for the two caching
strategies.

Besides the contents delivery, the demands on video
streaming traffic are also much higher during social

distancing implementation because there are many people
who work from home. In that context, emerging networking
technologies can be an effective solution. For example,
an architecture utilizing HTTP adaptive streaming [94]
and software-defined networking technology is proposed to
enable video streaming over HTTP. Moreover, a novel algo-
rithm is developed to optimally allocate users into groups,
thereby reducing communication overhead and leveraging
network resources. The results show that the proposed frame-
work can increase video stability, Quality-of-Service, and
resource utilization.

Scheduling and optimization are well-studied topics with
a vast literature available, which can be utilized for different
social distancing scenarios such as workforce, healthcare
appointment, home healthcare, and traffic scheduling, and
optimization of online services delivery. Nevertheless, except
for the home healthcare service scenario, the existing tech-
niques’ objectives do not align with the objectives of social
distancing. Moreover, scheduling algorithms are often devel-
oped such that they are only efficient for specific problems.
Therefore, developing novel optimization/scheduling algo-
rithms in operations research and adopting social distancing
as a new performance metric or design parameter is very
much desirable. Furthermore, the optimization of Internet-
based services such as content delivery can help to encourage
people to stay at home during social distancing periods by
ensuring the service levels.

C. INCENTIVE MECHANISM TO ENCOURAGE SOCIAL
DISTANCING
Due to the people’s self-interested/selfish nature character-
istics in their daily life [163] (especially during the pan-
demic outbreak), incentive mechanisms can be very helpful
in encouraging people to accept or share relevant informa-
tion to enable new social distancing methods. These mech-
anisms have been thoroughly discussed in crowdsourcing
as implemented in [135], [168]–[171]. Therein, the service
providers can provide incentives to a large number of people
to attract their contributions in data collection for crowd-
sourcing processes. For example, the contract theory-based
incentivemechanism for crowdsourcing is discussed in [168],
[169]. In particular, this approach is considered an effi-
cient mechanism to leverage common agreements between
the participating entities, e.g., a service provider and its
mobile users, in a certain area under complete and incom-
plete information from the participants [164]. The use of a
game theory-based incentive mechanism to encourage a set
of mobile users to form a crowdsourcing community network
is investigated in [135], [170]. Then, in [171], the authors
utilize an auction theory-based approach incentive mech-
anism to stimulate mobile users’ participation in crowd-
sourcing tasks such as traffic monitoring. In the following,
we also highlight the existing incentive mechanisms and how
they can be further adopted to encourage social distancing
applications.
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1) DISTANCE BETWEEN ANY TWO PEOPLE AND DISTANCE
TO/FROM CROWDS
To motivate people to keep safe distances from themselves to
others, contract theory-based incentive models via D2D com-
munications, e.g., Bluetooth, Wi-Fi Direct, can be employed.
In [165], the authors propose a contract theory-based mech-
anism to provide a higher reward for D2D-capable mobile
users if they send the information to a requesting mobile
user with a higher transmission data rate. Taking into account
the number of potential nearby mobile users in proximity,
the authors in [166] introduce the same mechanism such
that a mobile user will receive a higher payment if they
can share the information with more nearby users. Likewise,
the same approach considering a higher reward for a mobile
user who has shorter distances in sharing its information
to nearby D2D pairs is presented in [167]. Inspired by the
aforementioned works, we can consider the contract theory-
based method along with D2D communications to encourage
people to keep distances from other people/crowds. Specifi-
cally, mobile service providers can be subsidized/funded or
requested by the government to provide incentives to their
users to keep a distance from others when they are in public.
Specifically, a service provider can offer contracts to mobile
users, as illustrated in Fig. 12(a). Considering the current
distances from the nearby mobile users and capability to
inform them through D2D communications, those mobile
users can obtain more rewards when they successfully keep
a sufficient distance (e.g., at least 1.5 meters) from other
people/users. A violation (e.g., getting closer than 1.5 meters
to someone) can lead to a ‘‘penalty’’ (e.g., losing part of the
previous rewards).

2) CONTACT TRACING
In a pandemic outbreak, contact tracing is considered one
of the most important actions to contain the spread of
the disease. To trigger each mobile user for information
sharing, e.g., mobile user’s public identity, the network
operator requires to offer incentives to those who con-
tribute such information (besides privacy-preserving solu-
tions). In [168], the authors introduce a contract theory-based
incentive mechanism in a crowdsourced wireless community
network. In particular, the network operator offers contracts
to network-sharing mobile users containing a Wi-Fi access
price (for their nearby mobile users accessing the network
sharing) and a subscription fee (for the network-sharing
mobile users). Motivated by this work, we can also develop
a contact-tracing framework which allows a mobile user to
broadcast his/her public identity to the nearby mobile users as
long as their distances are within 1.5 meters. Then, the nearby
mobile users can store this public identity in their close-
contact log files including the time and location when they
receive that public identity as shown in Fig. 12(b). Mobile
users who store such log files will pay the sharing mobile user
to compensate for the information sharing. In this way, when
at least one of the mobile users in the log files is infected
by the contagious disease, the mobile service provider can

alert the mobile users with the log files to implement social
distancing.

3) CROWD DETECTION
A high density of people in specific areas can make con-
tagious diseases to spread the infection more quickly due
to people’s close proximity. To support social distancing,
an incentive mechanism approach can also be applied to
detect the people density in public areas or the number of
people in a building. In [169], the authors present a tourna-
ment model-based incentive mechanism to encourage mobile
users (with various performance ranks) connected to the local
wireless networks, e.g., Wi-Fi hotspots, to send the location
and unique identifier of the networks to the service provider
(Fig. 12(c)). From the hotspots’ location information, the ser-
vice provider can then determine the people density in each
hotspot area or the number of people in a building (which
may have several hotspot areas). Using the above method,
we can also encourage mobile users to avoid non-essential
public places, e.g., restaurants and shopping malls. In this
case, the reward can be adapted according to the locations
and essential level of the services (e.g., cinemas, restaurants,
grocery stores, schools, and hospitals).

In addition to the people density detection, we can adopt
incentive mechanisms to monitor the density of vehicles on
the city roads for traffic crowd avoidance purposes. In fact,
the contagious diseases, e.g., coronavirus, can remain on the
surfaces for four hours up to several days [172]. Thus, avoid-
ing traffic jams on the roads can reduce the possibility of dis-
ease infection. In [173], the authors propose a reward-based
smartphone collaboration method to support data acquisition
for location-based services. Specifically, a client will attract
surrounding smartphone users, e.g., vehicular users on a
highway, to collaborate together with the aim to build a big
database containing location information as implemented in
Google’s Android smartphones and Apple’s iPhone [3]. The
joining smartphone users then receive shared rewards from
the client considering their collaboration costs. Based on this
database, the client can determine the traffic levels according
to the vehicles’ density on the roads dynamically and sell this
information to the authorities or service provider. Such infor-
mation can be useful for several social distancing scenarios
such as crowd detection, traffic/movement monitoring, and
traffic control.

4) LOCATION/MOVEMENT SHARING AND STAY-AT-HOME
ENCOURAGEMENT
To further drive people away from high-density public places,
one can also consider incentive mechanisms for better social
distancing efficiency (especially for the people with their
mobile devices). In particular, the authors in [174] study the
uneven distribution of the crowdsourcing participants when
maximizing the social welfare of the network. To address
this problem, a movement-based incentive mechanism to
stimulate the participants to move from popular areas to
unpopular ones was introduced. This approach guarantees
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FIGURE 12. Contract-based incentive design scenarios to encourage social distancing. In (a) distance to/from crowds scenarios, users can be rewarded if
they keep a safe distance from each other. For (b) contact tracing, users can be rewarded when they share their close-contact information. For (c) crowd
detection, users can be incentivized to share current location information to determine the number of people at the same place. For (d) self-isolation
incentive, people who spend more time at home can obtain a higher reward.

that the participants will announce their actual costs for
further reward processes. Likewise, an incentive mechanism
in spatial crowdsourcing considering budget constraints to
reduce imbalanced data collection is discussed in [175]. Par-
ticularly, the service provider will provide a higher reward
when the mobile users are willing to participate in remote
locations instead of nearby locations where they belong to
(based on their daily routines). A similar work utilizing a
redistribution algorithm to incentivize crowdsourced service
providers from oversupplied areas to undersupplied ones is
also investigated in [136]. The above works are then extended
in [176]. Instead of encouraging mobile users to completely
move to faraway locations, the service provider will offer
a task-bundling containing the nearby and remote tasks for
each participating mobile user. All of these works show that
the proposed incentive mechanisms can efficiently balance
the various location popularity such that we can encourage
people to move to low-density places.

In a narrow-down scenario, we can also utilize an incentive
mechanism to encourage family-isolation/group-isolation for
the possible vulnerable/at-risk people, e.g., sick people and
older people. For example, the authors in [177] propose
a spatio-temporal-based incentive mechanism using both
smartphone and human intelligence in an ad hoc social net-
work. This framework allows a very large crowd to work
together in providing information sharing, i.e., geo-tagged
multimedia resources, while receiving incentives from the
system. Based on this method, we can also engage the
vulnerable/at-risk groups to isolate themselves and deliver
incentives for them at a certain location during a particular
period (Fig. 12(d)). The larger number of vulnerable/at-risk
members in a group, the higher incentives will be given.
Furthermore, we can design a real-time incentive mechanism
to encourage people to implement self-isolation by providing
more rewards for those who spend more time at a given loca-
tion, e.g., at home. In this case, the reward can be negative,
i.e., penalty, to discourage people from going to crowded
places.

D. PANDEMIC MODE FOR SOCIAL DISTANCING
IMPLEMENTATION
An occasional pandemic outbreak in a particular period can
drive the mobile service providers, e.g., Google and Apple,
to build up a pandemic mode application for current users’
mobile devices, e.g. smartphones. This application represents
a comprehensive framework utilizing the current pandemic
situation, i.e., infected movement data, to help the mobile
users stay aware of the contagious diseases and perform cau-
tious actions to slow down the spread of the diseases through
implementing social distancing. To this end, the use of users’
smartphones is very crucial to realize this pandemic mode
application as similarly implemented for smartphone-based
disaster mode application in [107]–[113]. When a contagious
disease outbreak is imminent, the government can first broad-
cast an urgent notification for mobile users to install/deploy
the official pandemic mode application in their smartphones.
Then, based on the current infected movement data, e.g.,
the current reported number of infected people and currently
infected areas, from the government officials, the service
providers can determine the risk levels of the pandemic and
activate a certain level in the smartphones. Considering the
risk level, the smartphones can leverage the existing sensors
and wireless connections to perform effective contact tracing
activity for contagious disease containment.

1) INFECTED MOVEMENT DATA
To determine the risk levels of the pandemic mode,
the authorities first need to monitor the current infected
movement information, i.e., infected areas and the number
of infected people. Based on this observation, the authori-
ties then can orchestrate the pandemic mode risk levels and
notify mobile users so that they can avoid the areas where
the highly-likely infection exists according to the current
risk level. In [114], the authors introduce an identification
framework to observe the spatial infection spread based on
the arrival records of infectious cases in subpopulation areas.
Considering susceptible and infectious people movement
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FIGURE 13. Pandemic mode in future infrastructures to support social distancing. In the infected movement
data scenario, the locations of infected cases can be used to determine the pandemic mode risk level of a
region. Based on this risk level, the authorities can allow different types of technologies for contact tracing,
e.g., low-risk regions only use cellular for contact tracing, whereas high-risk regions can utilize cellular,
Wif-Fi, and Bluetooth for contact tracing.

in metapopulation networks, the framework first splits the
whole infection spread into disjoint subpopulation areas.
Then, a maximum likelihood estimation is applied to predict
the most likely invasion pathways at each subpopulation area.
Using a dynamic programming-based algorithm, the frame-
work can finally reconstruct the whole spread by iteratively
assembling the invasion pathways for each subpopulation
to produce the final invasion pathways. Then, the authors
in [115] present a spatial-temporal technique to locate real-
time influenza epidemics utilizing heterogeneous data from
the Internet. In particular, the technique constructs a multi-
variate hidden Markov model through aggregating influenza
morbidity data, influenza-related data fromGoogle, and inter-
national air transportation data. This aims to identify the
spatial-temporal relationship of influenza transmission which
will be used for surveillance application. Through experi-
mental results, the technique can predict an influenza epi-
demic ahead of the actual event with high accuracy. Recently,
Google and Apple also create a framework to demonstrate the
community mobility trend with respect to the COVID-19 out-
break [117], [119]. In particular, this framework is generated
based on the regions of mobile users and changes in visits
monitoring at various public places, e.g., groceries, pharma-
cies, parks, transit stations, workplaces, and residential areas.

Motivated by the above works, the authorities can
first collect the spatio-temporal infectious disease-related
information from the Internet and official reports. Using

the aforementioned methods, the authorities can then extract
meaningful information about the spread locations/pathways
and time of the infectious diseases, which leads to various
spatio-temporal disease spread levels. Based on these dis-
ease spread levels, the authorities can customize the pan-
demic mode risk level for different regions, e.g., states,
cities, and provinces, at different times. For example, if the
disease spread level, e.g., the density of infected people,
at a particular city is high, the authorities can set the pan-
demic mode into a high-risk level for a week (as shown
in Fig. 13). Otherwise, the pandemicmode level can be set at a
low-risk level.

2) CONTACT TRACING
After determining the risk levels of the pandemic mode based
on the infected movement data, the authorities can broadcast
the risk level notification through smartphones’ pandemic
mode application. Afterward, the smartphones can perform
contact tracing to help quickly discovering infected people
for efficient outbreak containment [120], [121]. Based on
the risk level of the pandemic mode, the smartphones can
automatically trace contacts using certain sensors and wire-
less connections. For example, Google and Apple currently
collaborate together to develop a contact tracing applica-
tion utilizing Bluetooth technology, aiming to quickly detect
past contacts among mobile users in close proximity [3].
In this case, the Bluetooth is used to exchange beacon signals
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containing unique keys between two smartphones prior to
storing these keys to the cloud server for infected people
notification. Similarly, the work in [122] develops a wireless
sensor system to exchange beacon signals between a mobile
device with other nearby mobile devices as its contact infor-
mation. In another work, an epidemiological data collection
scheme utilizing users’ smartphones is described in [123].
Specifically, a user’s smartphone can be used as a sensor
platform to collect high accurate information including the
user’s location, activity level, and contact history between the
user and certain locations. Then, a smartphone-based contact
detection system leveraging the smartphone’s magnetometer
history is investigated in [124]. To determine the close con-
tact, the system measures the linear correlation between two
smartphones’ magnetometer records.

Inspired by the aforementioned works, smartphones can be
utilized as crucial tools to implement contact tracing consid-
ering the current risk level of the pandemic mode activated
by the authorities (as illustrated in Fig. 13). In particular,
if the authorities activate low-risk levels, i.e., the current
number of infected people and areas are small, smartphones
can trace close contacts using cellular networks only. In this
case, the pandemic mode application will disable certain
sensors, Bluetooth, and Wi-Fi by default. However, if the
high-risk level pandemic mode, i.e., the current number of
infected people and areas are large, is activated, the pandemic
mode application will enable all of the wireless connections
including Bluetooth, Wi-Fi, and cellular network, as well as
relevant sensors automatically to trace contacts faster.

Besides smartphone’s built-in sensors, wearable sensors
such as physiological (e.g., respiration rate, body tempera-
ture, etc.), audio, video, and inertial sensors, as well as wear-
able devices (GoPro, smartwatch), can all providemeaningful
information [178] for contact tracing. For example, when two
persons wearing body sensors networks (BSNs), i.e., sets of
wearable sensors attached to the body, making contact with
each other, a collaborative BSNs system can be utilized to
extract information from the contact. In [179], a framework
for computing and data fusion from multiple sensors of dif-
ferent BSNs is proposed. To allow the collaboration between
the two BSNs, the authors develop novel mechanisms includ-
ing inter-BSN data communication, BSN Proximity Detec-
tion, BSN mutual service discovery and activation, inter-
BSN high-level protocols, and cooperative multi-sensor data
fusion. As a result, the framework can detect physical inter-
actions such as handshakes between two persons. Although
these wearable systems can provide meaningful and accurate
data for contact tracing, they pose a threat to people’s privacy.
Therefore, the data from these wearable devices should only
be used when a pandemic mode is in effect.

IV. CONCLUSION
Social distancing has been considered to be a crucial mea-
sure to prevent the spread of contagious diseases such as
COVID-19. In this Part II, we have presented a compre-
hensive survey on how emerging technologies can enable,

encourage, and enforce social distancing. For each technol-
ogy, we have provided an overview, examined the state-of-
the-art, and discussed how it can be utilized in different social
distancing scenarios. Finally, we have discussed open issues
in social distancing implementations and potential solutions
to address these issues. We suggested that smart infrastruc-
tures (e.g., next-generation wireless systems like 6G, smart
home/building, smart city, intelligent transportation systems)
should incorporate a pandemic mode in its standard archi-
tecture/design. Such an operating mode allows us to bet-
ter (systematically) respond to COVID-19-like pandemics in
the future.
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