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ABSTRACT The Cramér-Rao Bound (CRB) is a powerful tool to assess the performance limits of a
parameter estimation problem for a given statistical model. In particular, the Gaussian CRB (i.e., the CRB
obtained assuming the data are Gaussian) corresponds to the worst case; giving the largest CRB among a
large class of data distributions. This makes it very useful in practice since optimizing under the Gaussian
data assumption can be interpreted as a min-max optimization (i.e., minimizing the largest CRB). The
Gaussian CRB is also the corresponding bound of Second-Order Statistics (SOS)-based estimation methods,
which are frequently used in practice. Despite its practicality, computing this bound might be cumbersome
in some cases, particularly in the case where the input is assumed deterministic and has a large number
of samples. In this paper, we address this computational issue by proposing a fast computation for the
deterministic Gaussian CRB of Single-Input Multiple Output (SIMO) blind system identification. More
precisely, we exploit circulant matrix properties to reduce the cost from cubic to quadratic with respect to
the sample size. Moreover, we derive a closed-form formula for the asymptotic (large sample size) Gaussian
CRB and show how it can be computed using the residue theorem.

INDEX TERMS Blind system identification, Cramér-Rao Bound (CRB), Single-Input Multiple-Output
(SIMO) systems, fast and asymptotic computations.

I. INTRODUCTION
Parametric estimation plays a central role in many signal
processing problems encountered in various fields such as
radar, communications, and seismology. When dealing with
parametric estimation, the analytic evaluation of the exact
performance of an estimator is often intractable. A widely
used approach to bypass this issue consists in first finding
a lower bound (or limit) on the estimation performance for
the problem at hand (independently of the considered esti-
mator), and then comparing the experimental performance
of the estimator of interest to this bound. The knowledge
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of such performance bound is of great importance since:
i) it allows to know if, after using a particular estimator,
an improvement is possible or not [1]; ii) it allows to know
if respecting certain performance requirements is possible in
a given context [2]; and iii) it allows a system design with
the best achievable accuracy [3], [4]. Among the existing
bounds, the CRB (Cramér-Rao Bound) is the most widely
used for benchmarking themean-square-error (MSE) of unbi-
ased estimators [5], [6]. Particularly, the Gaussian CRB is of
great practicality as it represents the least favorable (giving
the largest CRB) but the most tractable and useful case [7].
Basically, if an estimator performs well under the Gaussian
assumption, then we expect to be able to do better under other
assumptions. Moreover, the Gaussian CRB is a lower bound
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on all estimators based on second-order statistics (SOS);
a class of estimators frequently considered in practice.

In this work, we consider the problem of identifying
the channel coefficients and input signal of a Single-Input
Multiple-Output (SIMO) system in the blind context; i.e., the
only known quantity is the output. This problem has been
studied thoroughly in the literature and several SOS-based
solutions have been proposed for it in the past [8]–[10]. Even
though the Gaussian CRB formula for this problem is known,
its computation for a deterministic input remains, however,
a challenging task due to the excessive computational cost it
incurs, particularly in cases where a one-time offline compu-
tation is not an option; for example, when we need to com-
pute the CRB for different sets of parameters. In this work,
we focus on this specific problem and propose an alternative
formulation for the elements of the CRB matrix allowing for
a significant reduction in its computational cost. This formu-
lation involves expressing the most computationally heavy
blocks in terms of a circulant matrix, then use its diagonalized
form to enable fast computations. This is possible thanks to
the fact that a circulant matrix can be diagonalized using the
Discrete Fourier Transform (DFT) matrix, which can be com-
puted fast using the Fast Fourier Transform (FFT) algorithm.
Furthermore, we also derive an asymptotic formula (given in
an integral-form and assuming (very) large sample sizes) for
the stochastic Gaussian CRB and provide an efficient solution
for its computation based on the residue theorem [11].

This paper is organized as follows. We start by formu-
lating the Blind System Identification (BSI) problem in
Section II, then we present the CRB formula for this problem
in Section III. Section IV follows with a presentation of
the proposed fast computation of the CRB. In Section V,
we present the proposed asymptotic CRB formula and vali-
date it using computer simulations. Finally, we provide some
concluding remarks in Section VI.

A. NOTATION
C Set of complex numbers.
x, X Column-vectors are in bold lower-case

font and matrices are in bold upper-case
font.

(X)ij ij-th element of matrix X.
Re (·), Im (·) Real-part and imaginary-part operators.
(·)∗, (·)T , (·)H Conjugate, transpose, and

conjugate-transpose operators,
respectively.

X−1, X
1
2 Matrix inverse and matrix square-root.

X−H , X
H
2 Denote (XH )−1 = (X−1)H and (XH )

1
2 =

(X
1
2 )H , respectively. (Similar notation if

H is replaced by ∗ or T .)
rank (X) Rank of matrix X.
diag (x) Diagonal matrix with components of x as

diagonal elements.
IN , I Identity matrix of size N × N . Subscript

N is dropped if understood from context.

ei i-th column of I. Size understood from con-
text.

0N×N , 0 Matrix of size N × N with all elements 0.
SubscriptN×N is dropped if understood from
context.

⊗ Kronecker product.
δ(τ ) Dirac delta function; equals 1 at 0 and equals

0 elsewhere.
O (N ) ‘‘Big-Oh’’ notation indicating that the compu-

tational cost of an (complex) operation is of
order N , e.g., for x, y ∈ CN and A ∈ CM×N ,
xT y is O (N ) and Ax is O (MN ).

II. PROBLEM FORMULATION
We consider a SIMO system where each output xi[n], i =
1, . . . ,M , is described using

xi[n] =
L∑
l=0

hi[l]s[n− l]+ wi[n], n = 0, . . . ,N − 1, (1)

where hi[l] denotes coefficient l of channel i, L is the max-
imum channel order, s[n] is the input signal (we assume
s[n] = 0, for n < 0) and wi[n] is a zero-mean additive
white (complex circular) Gaussian noise of variance σ 2. All
quantities are assumed complex-valued. Using matrix-vector
notation, (1) can be written

x = Hs+ w = Sh+ w, (2)

where x = [x1[0], . . . , x1[N − 1], . . . , xM [0], . . . , xM [N −
1]]T , s = [s[0], . . . , s[N − 1]]T , w = [w1[0], . . . ,w1[N −
1], . . . ,wM [0], . . . ,wM [N − 1]]T , h = [h1[0], . . . ,
h1[L], . . . , hM [0], . . . , hM [L]]T , H = [HT

1 , . . . ,H
T
M ]T

where

Hi =



hi[0] 0
...

. . .

hi[L] hi(0)
. . .

. . .

0 hi[L] · · · hi[0]


N×N

, (3)

and S = IM ⊗ S, where

S =



s[0] 0
. . .

... s[0]
...

s[N − 1] · · · s[N − L − 1]


N×(L+1)

.

The problem of blind SIMO system identification con-
sists in ‘‘finding’’ the (unknown) channel coefficients
and (unknown) input signal using only the (known) out-
puts together with certain (statistical) side information. In a
deterministic context, we seek θ = [hT , sT ]T assuming a
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known x and an additive white Gaussian noise with known1

variance σ 2.
Note that BSI can be achieved only up to an unknown scalar

(see [12], [13]). Appropriate constraints need to be consid-
ered for a ‘full’ identification (with the scalar indeterminacy
removed). The corresponding CRB is termed constrained
CRB.

III. CRB (UNCONSTRAINED AND CONSTRAINED)
FORMULAS
Before presenting the proposed fast and asymptotic compu-
tations in sections IV and V, we recall in this section the
formulas of the unconstrained CRB (referred to as CRB) and
its constrained counterpart (referred to as CCRB) for the blind
SIMO system identification problem defined in Section II.

A. UNCONSTRAINED CRB
The CRB matrix provides a lower bound on the error covari-
ance matrix of any unbiased estimator. Such lower bound
exists only for certain classes of estimators like the consid-
ered class of unbiased ones. Indeed the latter is the most
used in the literature, mainly because ‘good’ estimators are
asymptotically unbiased in general. Note also that this class
of (asymptotically) unbiased estimators is suitable for our
context as we consider large sample sizes for our fast or
asymptotic CRB derivation.

The unconstrained CRB matrix (denoted CRB)2 is com-
puted as the inverse of the Fisher Information Matrix
(FIM) (denoted J and assumed nonsingular in this subsec-
tion). When the parameter to estimate is complex-valued
(i.e., θ ∈ CP, P = M (L + 1) + N ), the FIM J ∈ C2P×2P

is defined as [14]–[16]

J =
[
Jθθ Jθθ∗
Jθ∗θ Jθ∗θ∗

]
=

[
Jθθ Jθθ∗
JH
θθ∗

J∗θθ

]
, (4)

where Jθθ = E
(
11H

)
and Jθθ∗ = E

(
11T

)
, with

1 = ∇θ∗ ln p(x; θ ), where ∇θ∗ = ∂
∂θ∗
= [ ∂

∂θ∗1
, . . . , ∂

∂θ∗P
]T

is the complex gradient operator defined as in [17] and
ln p(x; θ ) is the likelihood function. Note that the derivatives
∂
∂θ∗i

are Wirtinger derivatives [18],3 which are defined as
∂
∂θ∗i
=

1
2

(
∂

∂ Re(θi)
+ j ∂

∂ Im(θi)

)
, where Re (·) and Im (·) denote

real-part and imaginary-part operators, respectively, and the
derivatives on the right-hand-side are the usual partial deriva-
tives taken with respect to real-valued quantities. Using the
notation defined above, we can write

J = E
(
1̃1̃H

)
,

where 1̃ = [1T ,1H ]T . When x is a noncircular com-
plex Gaussian random vector, the FIM expression is given

1It can be shown that, in this context, knowing the noise variance or not
does not affect the CRB of the desired parameters.

2We use a boldface font to emphasize the fact that it is a matrix.
3All derivatives in the sequel are assumed to be Wirtinger derivatives.

(elementwise) by [19]

(J)ij =
(
∂µ̃x

∂θi

)H
R̃−1x

∂µ̃x

∂θj
+

1
2
Tr

[
∂R̃x

∂θi
R̃−1x

∂R̃x

∂θj
R̃−1x

]
,

(5)

where

µ̃x =

[
µx
µ∗x

]
, and R̃x =

[
Rx Rx

R
∗

x R∗x

]
,

with µx = E (x) is the expected value of x, Rx =

E
(
(x− µx)(x− µx)H

)
is the covariance matrix of x, and

Rx = E
(
(x− µx)(x− µx)T

)
is the pseudo-covariance

matrix of x [20]. Because the noise is assumed circular Gaus-
sian in (1), we have µx = Hs = Sh, R̃x = σ 2I, and (5)
simplifies to

(J)ij =
1
σ 2

[(
∂µx

∂θi

)H
∂µx

∂θj
+

(
∂µ∗x
∂θi

)H
∂µ∗x
∂θj

]
. (6)

From (6), we can see that (Jθθ∗)i,j = 0 and that (Jθθ )i,j =
1
σ 2

(
∂µx
∂θi

)H
∂µx
∂θj

. This indicates that the knowledge of J ∈

C2P×2P reduces to the knowledge of Jθθ ∈ CP×P. There-
fore, the FIM for the unconstrained estimation of θ for our
model (2) is block diagonal given by

J =
[
Jθθ 0
0 J∗θθ

]
, (7)

where

Jθθ =
1
σ 2

[
SHS SHH
HHS HHH

]
=

1
σ 2

[
A B
BH C

]
. (8)

For notational simplicity matrices A, B, BH , and C are used
instead of SHS, SHH, HHS, and HHH, respectively. The
unconstrained CRB matrix

CRB = J−1 =

[
J−1θθ 0

0
(
J−1θθ

)∗] , (9)

is completely determined by J−1θθ (assumed nonsingular). If J
is singular,4 we consider a constrained estimation of θ , which
leads to the constrained CRB presented in the next section.

B. CONSTRAINED CRB
As indicated before, the blind identification of (2) is possible
only up to an unknown scalar. This indeterminacy leads to
a singular FIM that cannot be directly inverted to obtain the
CRB. To remove the indeterminacy, we resort to adding con-
straints on the parameters. Indeed, the indeterminacy reflects
the existence of many solutions and the constraint is used here
to target one (unique solution) among them. In the following,
we show how to obtain the constrained CRB matrix (denoted
CCRB) from the unconstrained FIM J. The given derivation

4Singularity occurs when full identification of the parameter vector is not
possible (in our case due to the inherent scalar indeterminacy of the BSI
problem).
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FIGURE 1. Flowchart for the fast computation of CRB and CCRB. The abbreviation ‘‘FCo.’’ stands for ‘‘Fast computation of’’. An arrow from block x to block
y should be read as ‘‘x enables y ’’. Matrices with block elements A, B, and C (possibly with a bar or a tilde) hint to the particular structure where C is a
square large-size matrix and is the most computationally heavy to invert, A is a square small-size matrix, and B is a rectangular low-rank matrix.

follows the one found in [15] and is given here for complete-
ness. For complex-valued parameters, we need to consider the
augmented parameter vector θ̃ = [θT , θH ]T of size 2P× 1.5

The set of K constraints imposed on the parameter estimation
to remove the indeterminacy can be written as

g(θ̃ ) = 0,

where g(θ̃ ) is of size K × 1. We then define an augmented
constraint set written as

f(θ̃ ) =
[
g(θ̃ )
g(θ̃ )∗

]
= 0,

where f(θ̃ ) is of size 2K × 1. We also define F(θ̃ ) ∈ C2K×2P

(assumed to have full row rank) as

F(θ̃ ) =
∂f(θ̃ )

∂ θ̃
=

[
∂f(θ̃ )
∂θ

,
∂f(θ̃ )
∂θ∗

]
,

where

∂f(θ̃ )
∂θ
=


∂f1
∂θ1

· · ·
∂f1
∂θP

...
. . .

...
∂f2K
∂θ1

· · ·
∂f2K
∂θP

 .
If r = rank

(
F(θ̃ )

)
, then we can find a matrix U ∈

C2P×(2P−r) with columns that form an orthonormal basis for
the nullspace of F(θ̃ ), i.e.,

F(θ̃ )U = 0.

Finally, the constrained CRB matrix is defined as

CCRB = U(UHJU)−1UH . (10)

5This is similar to the need for an augmented FIM (4) for complex-valued
parameters.

IV. FAST CRB AND CCRB COMPUTATIONS
Because we consider h and s as deterministic unknowns,
the vector θ = [hT , sT ]T of desired parameters contains
all the values of the channel coefficients and input samples.
The excessive computational cost of the CRBmatrices comes
from the inversion of J ∈ C2P×2P for the CRB and from
the inversion of J̃ = UHJU ∈ C(2P−r)×(2P−r) for the
CCRB (see (9) and (10)), especially when the sample size
N is large; recall that P = M (L + 1)+N . We show hereafter
how does the fast computation ofC−1 (see (8)) enable the fast
computation of both CRB and CCRB.

The computational cost of the proposed computation
isO

(
N 2ML

)
instead ofO

(
(M (L + 1)+ N )3

)
resulting from

a direct matrix inversion using, for example, Gauss-Jordan
elimination.

A. BASIC IDEA
Fig. 1 shows a flowchart for the fast computation of CRB
and CCRB, the details of which are given in the sequel. Both
computations depend on the fast computation of matrix C−1.
Also, we note the recurrent need for the inversion of matrices
of the form [

A B
BH C

]
,

where block elements A, B, and C (possibly with a bar or
a tilde) are such that C is a square large-size matrix, A is
a square small-size matrix, and B is a rectangular low-rank
matrix. This structure suggests (through the use of block
matrix inversion; see Proposition 1) that the fast computation
of the inverse of such matrices is enabled through the fast
computation of matrix C−1 (or C̃−1), which is the most
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computationally heavy to invert. Moreover, note the similar-
ity between the expression of C̃−1 and its block elements
(details given in the sequel) and the expression of CRB.
This similarity will allow us to use the same procedure for
computing C̃−1 and CRB.
The flowchart together with the derivation steps given in

the following subsections represent, for the interested reader,
the pseudo-code of our fast CRB computation algorithm.

Before proceeding further, we recall here a result related
to block matrix inversion, which we will be using often in the
sequel.
Proposition 1: Block matrix inversion6

Let A ∈ Cn×n, B ∈ Cn×m, and C ∈ Cm×m. If C and
D = A− BC−1BH are nonsingular, then[

A B
BH C

]−1
=

[
D−1 −D−1BC−1

−C−1BHD−1 C−1 + C−1BHD−1BC−1

]
. (11)

As shown in Fig. 1, the computation of the CRBs depend
directly (for CRB) or indirectly (for CCRB through C̃−1)
on the computation of matrix C−1. On one hand, C−1 has
the largest size and is the most computationally heavy when
computing CRB. On the other hand, C−1 is the most compu-
tationally heavy when computing C̃−1, which in turn is the
most computationally heavy in the computation of CCRB.
Therefore, a fast computation of C−1 should allow a fast
computation of both CRB and CCRB. (The diagonal blocks
of these matrices are of particular interest since the trace
of the CRB matrix is a lower bound on the MSE of any
unbiased estimator of θ .) The basic idea for the proposed
fast computation consists in expressing C−1 in a form which
involves the use of circulant matrices (Toeplitz matrices with
‘wraparound’ [23, p. 220]); known for having a particular
decomposition that uses the Discrete Fourier Matrix (DFT)
for which fast computations are possible using the fast Fourier
Transform (FFT) algorithm. The details for the fast computa-
tion of C−1 are provided in Section IV-C.
Remark: In our work, we implicitly assumed the source

signal to be zero before the initial time instant n = 0. If it were
not the case, the channel matrix (3) would have a Sylvester
structure as shown in [24]. However, the basic idea for the
fast CRB computation can still be used for this latter context
but with a slight modification of the derivation details.

B. EXPRESSION OF THE CCRB
In this section, we give the expressions of the different matri-
ces shown in Fig. 1 that are involved in the computation of
CCRB. We chose two constraints to remove the complex
scalar indeterminacy defined, following the presentation of
Section III-B, by vector g(θ̃ ) = [hTh∗ − 1, hi0 − h

∗
i0
]T = 0,

i.e., a unit-norm constraint and element hi0 constrained to be

6This is a particular case of the general one described in [21], [22].

real-valued. In this case, we have the augmented constraint
vector f(θ̃ ) = g(θ̃ ); since g(θ̃ )∗ gives a redundant set of
constraints that are discarded for F(θ̃ ) to have full row-rank.
This latter matrix is defined as

F(θ̃ ) =
[
F1 F2

]
,

where

F1 =

[
hH 0
eTi0 0

]
, F2 =

[
hT 0
−eTi0 0

]
.

We define matrix7 U, for which we have F(θ̃ )U = 0, as

U =
[
K1 U1 0
K2 0 U∗1

]
= 0,

where U1 ∈ CP×(P−2) is such that F1U1 = 0 and F2U∗1 =
0. Matrices K1 ∈ CP×2 and K2 ∈ CP×2 complete the
number of columns of U to 2P − 2 columns, where they
introduce two columns that are orthogonal to the columns
of matrix diag

(
[U1,U∗1]

)
. Taking into account (7) and U we

can write

J̃ = UHJU =
[
Ã B̃
B̃H C̃

]
,

where Ã ∈ C2×2, B̃ ∈ C2×(2P−4), and C̃ ∈ C(2P−4)×(2P−4)

are defined as Ã = KH
1 JθθK1 + KH

2 J
∗

θθK2, B̃ =[
KH

1 JθθU1,KH
2 J
∗

θθU
∗

1

]
, and

C̃ =
[
J̃θθ 0

0 J̃∗θθ

]
,

where J̃θθ = UH
1 JθθU1. Using (11) to find the inverse of J̃

shows that C̃−1 is the most computationally heavy. In fact,
we can show that the cost of computing the other terms is at
most O

(
N 2
)
. Therefore, the cost of computing J̃−1 is of the

same order as the computational cost of C̃−1 defined as

C̃−1 =

(J̃θθ)−1 0

0
(
J̃−1θθ

)∗
 .

Due to the structure of matrix F1, matrix U1 defining J̃θθ can
be written as

U1 =

[
Ū1 0
0 IN

]
,

where Ū1 is the part of U1 that gets multiplied by the first
M (L + 1) non-zero columns of F1. This leads to

J̃θθ =
1
σ 2

[
Ā B̄
B̄H C

]
,

where Ā ∈ C(M (L+1)−2)×(M (L+1)−2), B̄ ∈ C(M (L+1)−2)×N ,
and C ∈ CN×N are defined as Ā = ŪH

1 AŪ1, B̄ = ŪH
1 B, and

C = HHH (as defined in (8)). Using (11), we can write

J̃−1θθ = σ
2
[

D̄−1 −D̄−1B̄C−1

−C−1B̄H D̄−1 C−1 + C−1B̄H D̄−1B̄C−1

]
,

7We omit providing the explicit expressions of the matrix blocks of U as
it has no impact on the computational cost.
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where D̄ = Ā − B̄C−1B̄H . Fast computations of J̃−1θθ
(hence C̃−1) for CCRB and J−1θθ for CRB follow the same
procedure that starts by a fast computation of C−1 (presented
in Section IV-C) followed by the computation of the remain-
ing blocks of J̃−1θθ for CCRB or J−1θθ for CRB (presented in
Section IV-D).

C. FAST COMPUTATION OF MATRIX C−1

Recall that C = HHH =
∑M

i=1H
H
i Hi. The different steps

involved in the fast computation of C−1 can be summarized
as follows.
(a) Express C in the form C = Cc + Cr , i.e., a sum

of a circulant matrix Cc and a matrix Cr we call the
remainder matrix of C.

(b) Express Cr in the convenient form Cr = V6VH

to enable the use of the Sherman-Morrison-Woodbury
formula [23, p. 65] in order to put C−1 =(
Cc + V6VH

)−1 in the form
C−1=C−1c −C

−1
c V

(
6−1+VHC−1c V

)−1
× VHC−1c .

(12)

(c) Leverage Theorem 1 for a fast computation of
C−1c to allow the fast computation of the different
terms involved in (12), all of which contain C−1c ;
except 6−1, which is a small-size, easily computed
matrix.

Theorem 1 ( [23, p. 222]): LetZ be a circulant matrix with
z ∈ CN representing its first column. Then, W−1N ZWN =

diag (λ), where λ =WH
N z.

WN denotes the DFT matrix of size N × N defined
elementwise as (WN )ij = ω

(i−1)(j−1)
N , where ωN =

exp(−j2πN ). Matrix WN is symmetric, i.e., WT
N = WN , and

is a (scaled) unitary matrix, i.e., WH
NWN = N IN . Therefore,

W−1N =
WH

N
N .

Hereafter, we detail the different steps described above.

1) STEP(A)
By adding and subtracting matrix Hir to Hi (see (3)), where
Hir is defined as

Hir =

[
0L×(N−L) 1i

0(N−L)×(N−L) 0(N−L)×L

]
such that

1i =

−hi(L) · · · −hi(1)
...

. . .
...

0 · · · −hi(L)


L×L

,

we can write Hi = Hic + Hir , where Hic = Hi − Hir is a
circulant matrix. Since C =

∑M
i=1H

H
i Hi, we can write C =

Cc + Cr , where

Cc =

M∑
i=1

HH
icHic (13)

is a circulant matrix (sums and products of circulant matrices
give circulant matrices)8 and

Cr =

M∑
i=1

HH
irHir +HH

icHir +HH
irHic (14)

is the so-called remainder matrix of C.

2) STEP(B)
Let Hic(1 : L, :) denote rows 1 to L of matrix Hic, and let
EHi = 1

H
i Hic(1 : L, :) and Gi = 1

H
i 1i, then we have

Cr =

[
0 0
0 G

]
+
[
0 E

]
+

[
0
EH

]
,

where G =
∑M

i=1Gi = GH , and E =
∑M

i=1 Ei. Now, if we
let G̃H

= [0, 1
√
2
G

H
2 ] and ẼH =

√
2G

−H
2 EH + [0, 1

√
2
G

H
2 ],

where G
−H
2 = (G

−1
2 )H , then we can write (14) as

Cr = G̃ẼH + ẼG̃H

=
[
G̃ Ẽ

] [0 I
I 0

] [
G̃H

ẼH

]
= V6VH , (15)

where V is N × 2L and 6 is 2L × 2L making Cr of rank 2L
(i.e., a low-rank matrix). From (15), we get

C = Cc + V6VH . (16)

Having C written in the from (16), enables us to use the
Sherman-Morrison-Woodbury formula [23, p. 65], and write
the inverse of (16) as

C−1 = C−1c − C−1c V
(
6−1 + VHC−1c V

)−1
× VHC−1c , (17)

which allows a fast computation of (17) at step (c).

3) STEP(C)
Because Hic is circulant, we can use Theorem 1 and the
properties of the DFT matrix to write (13) as

Cc =

M∑
i=1

W−HN 3H
i W

H
NWN3iW−1N

= WN3W−1N ,

which leads to

C−1c =WN3
−1W−1N , (18)

where 3 =
∑M

i=13
H
i 3i, and 3i = diag

(
WH

N ci
)
, where ci

is the first column of (3) (same as the first column of Hic),
i.e., ci = [hi(0), . . . , hi(L),01×(N−L−1)]T . Replacing (18)
in (17) gives

C−1 = WN3
−1W−1N −WN3

−1W−1N U

×

(
6 + UHWN3

−1W−1N U
)−1

8Checking this fact is straightforward for the sum and is easily done for
the product using Theorem 1.
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TABLE 1. Summary of the computational cost of the different terms
involved in (19).

× UHWN3
−1W−1N . (19)

Because we are using the DFT matrix, computing 3i costs
O (N logN ).9 Computing3 costsO (NM) (M sums of prod-
ucts of N diagonal elements) and 3−1 (inverse of a N ×
N diagonal matrix) costs O (N ). Therefore, the total cost
for the computation of 3−1 is O (N logN ) (the highest of
the intermediary costs).10 The computation of the remaining
terms involved in (19) is conducted in a similar way. Table 1
summarizes the obtained (total) computational cost of the
different terms of (19). We find that the overall cost of com-
puting C−1 is O

(
N 2 L

)
.

TABLE 2. Summary of the computational cost of the different terms
of J−1

θθ
, or equivalently J̃−1

θθ
.

D. FAST COMPUTATION OF CRB (OR C̃−1)
As shown in Fig. 1, the fast computation of CRB (resp. C̃−1)
is enabled through the fast computation of J−1θθ (resp. J̃−1θθ ),
which in turn is enabled through the fast computation of C−1

presented in Section IV-C. Based on (11), we give in Table 2
the computational cost of the different terms involved in
computing J−1θθ . The computation of J̃−1θθ generates the same
cost as J−1θθ , since the sizes of the matrix blocks of J̃−1θθ are
only reduced by two rows or two columns compared to the
sizes of the block matrices of J−1θθ . We find in the end that the
total computation cost of J−1θθ , hence CRB, is O

(
N 2 ML

)
.

To illustrate the computational gainwe get via the proposed
fast computation method, we provide in Table 3 a numerical

9We use a base-2 logarithm.
10For simplicity, we assumed that M ≤ logN so that only the dominant

cost terms are given in Table 1.

TABLE 3. Comparison between our fast computation (O
(

N2ML
)

) and a

direct computation (O
(

(M(L+ 1)+ N)3
)

) of the CRB for different values
of N with L = 4 and M = 2.

example highlighting the computational complexity as func-
tion of the sample size N .

V. ASYMPTOTIC CRB COMPUTATION
When the sample size is very large, the inversion of the
FIM might become prohibitively expensive even with the
fast computation proposed in this paper. In such case, it is
useful to consider an asymptotic approximation of the FIM
(i.e., an approximation for large sample size N ). The goal
here is to provide a simple formula that helps getting some
insight on the estimation performance in the asymptotic case.

For this asymptotic approximationwe consider a stochastic
perspective, where the input signal is assumed random rather
than deterministic. By adapting the multivariate Whittle for-
mula proposed in [25, Eq. (6.3)] to handle complex variables,
we get the following expression for the (elementwise) asymp-
totic FIM

[Ja]ij =
N
2

∫ 1/2

−1/2
Tr
[
∂Pxx(f ; θ )
∂θ∗i

Pxx(f ; θ )−1

×

(
∂Pxx(f ; θ )
∂θ∗j

)H
Pxx(f ; θ )−1

]
df , (20)

where Pxx(f ; θ ) is the power spectral density of observa-
tion x. Assuming, for example, a white input signal with
auto-correlation Rss(τ ) = σ 2

s δ(τ ) (where δ(τ ) is the Dirac
delta function, i.e., a function that equals 1 at 0 and equals 0
elsewhere), we get

Pxx(f ; θ ) = σ 2
s h(f )h(f )

H
+ σ 2I,

where h(f ) = [h1(f ), . . . , hM (f )]T with hi(f ) =∑L
n=0 hi[n]e

−j2π fn. Applying the Sherman-Morrison formula
we find that

Pxx(f ; θ )−1 =
1
σ 2

(
I−

σ 2
s h(f )h(f )

H

σ 2 + σ 2
s h(f )Hh(f )

)
.

We propose to solve (20) in the Z-domain, which gives

[Ja]ij =
N
4π j

∮
|z|=1

Tr
[
∂Pxx(z; θ )
∂θ∗i

Pxx(z; θ )−1

×

(
∂Pxx(z; θ )
∂θ∗j

)H
Pxx(z; θ )−1

]
dz
z

=
N
4π j

∮
|z|=1

f (z)dz, (21)

where f (z) is the functionwithin the integral, which simplifies
to (assuming θi = hi[l] and θj = hj[m])

f (z) =
σ 4
s z

l−m−1

σ 2

(
δ(i− j)−

hi(z)hj(z)∗

σ 2 + σ 2
s h(z)Hh(z)

)
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×
h(z)Hh(z)

σ 2 + σ 2
s h(z)Hh(z)

,

and

Pxx(z; θ ) = σ 2
s h(z)h(z

−∗)H + σ 2I,

where h(z) = [h1(z), . . . , hM (z)]T with hi(z) =∑L
n=0 hi[n]z

−n, and h(z−∗) = h(z) since z−∗ = z when
evaluated along the unit-circle, and

Pxx(z; θ )−1 =
1
σ 2

(
I−

σ 2
s h(z)h(z)

H

σ 2 + σ 2
s h(z)Hh(z)

)
.

The integral (21) can be computed using the residue theo-
rem [11] by writing

[Ja]ij =
N
2

∑
k

residue (f (z), pk)

∣∣∣∣
|pk |<1

,

where residue (f (z), pk)
∣∣
|pk |<1 denotes the residue of func-

tion f (z) at pole pk verifying |pk | < 1 (i.e., inside the unit-
circle).

Note that Ja is an asymptotic approximation for the term
D = A − BC−1BH we find (inverted) in the upper-left
corner of the right-hand-side of (11). Assuming the matrix
to invert is (8), this term represents the unconstrained CRB
matrix of the channel coefficients. Note also that the diago-
nal element [Ja]ii can be considered as an indicator for the
estimation performance of element θi (a particular channel
coefficient) assuming other parameters are known (favorable
case). Therefore, a possible indicator for a bad diversity
would be

I = min
i
[Ja]ii.

If I is ‘small’, then this indicates a bad diversity condition.
Figs. 2 and 3 illustrate the closeness of the asymptotic

FIM expression in (20) to the exact FIM expression for large
sample sizes. The plots represent the trace of the corre-
sponding CRB matrices versus the sample size and show the
effectiveness of the asymptotic Whittle approximation. The
latter allows us to overcome the cumbersome computation
of the FIM and its inverse when the data observation period
is relatively large. The results were generated using the fol-
lowing parameters: M = 2, σ 2

s = 1, ten Monte-Carlo runs
for each value of the sample size N , and (complex Gaussian)
randomly generated channels and source signal. In addition,
Fig. 2 gives a comparison for two values of the channel
order: L = 4 and L = 6 at a signal-to-noise ratio (SNR)
of 10 dB, whereas Fig. 3 gives a comparison for two values
of the SNR: 0 dB and 10 dB, for a fixed channel order
L = 4. We notice that attaining the exact CRB is faster for
low channel orders (zoom in Fig. 2) and high SNRs (zoom
in Fig. 3) which illustrates the fact that the rate of convergence
depends on the parameters of the system under consideration.
Finally, in all simulated scenarios, we observe that the asymp-
totic CRB seems to be more optimistic (i.e. lower) than the
exact one.

FIGURE 2. Traces of the asymptotic (blue curves) and exact (red curves)
CCRB matrices versus the sample size N for channel orders L = 4 (solid
curves) and L = 6 (dashed curves) at SNR = 10 dB.

FIGURE 3. Traces of the asymptotic (blue curves) and exact (red curves)
CCRB matrices versus the sample size N for SNR values 0 dB (solid
curves) and 10 dB (dashed curves), and channel order L = 4.

VI. CONCLUSION
The Gaussian CRB is of great interest in signal processing
for many purposes and application fields. Its computation
in the deterministic case, however, can be heavy or even
impractical as it involves the inversion of a matrix which
dimension grows linearly with the sample size.We propose in
this paper a fast implementation of the deterministic Gaussian
CRB in the context of multi-channel blind system identifica-
tion. This implementation preserves the exact CRB formula
while reducing the numerical computation from a cubic to a
quadratic cost with respect to the parameter vector dimension.
In addition, we propose an asymptotic (approximate) expres-
sion of the stochastic Gaussian CRB, which has the advantage
of compactness, easy derivation, and applicability for large
sample sizes. An illustrative numerical example is provided to
show that the asymptotic regime is reachable when the sample
size is sufficiently large. Finally, we show how the asymptotic
FIM expression can be used as an indicator on how difficult
the channel identification problem at hand is.
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As perspective, a generalization using the same basic ideas
of this work, can be considered for the Multiple Input Multi-
ple Output (MIMO) or semi-blind cases.
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