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Abstract

The vortex ring-tube reconnection in a viscous fluid was investigated using a proposed vortex-in-cell

method combined with a large eddy simulation model (LVIC). This method was verified using

simulations of the Taylor–Green vortex flow at the Reynolds numbers (Re) of 200 and 2000. The

results show that the present method can capture the small-scale vortex structures in turbulent flows

well. Besides, a Lagrangian method for passive scalar transport was successfully developed to track

the vortex dynamics. The LVIC was then applied to three simulations of the interaction of a vortex

ring at RerΓ (Γ/ν) = 10000 and a vortex tube at RetΓ = 1000, 5000 and 10000. At RerΓ = 10000 and

RetΓ = 1000, the effects of the tube on the ring are trivial while the ring breaks it into two parts and

entrains them. The flow’s energy spectrum remains unchanged with time, the small-scale vortices are

not generated, and the ring’s motion plays a key role in the flow. Moreover, the helicity distribution

on the vortices is negligible. At RerΓ = 10000 and RetΓ = 5000, the tube breaks into two parts,

and the leaving part of the tube interacts forcefully with the ring to form the small-scale vortices

at the high wavenumbers. The population of small-scale vortex structures increases with time, and

the large-scale vortices are twisted after the impingement. At RerΓ = 10000 and RetΓ = 10000, the

impingement of the ring on the tube leads to their breakdown and reconnection. A part of the

ring interacts with the leaving part of the tube to form a secondary ring, while the rest replaces

the leaving part to reconnect the tube. The population of small-scale vortex structures and helicity

distribution increase in this flow stage because of the interaction of the secondary ring wake and

connection vortices. However, after the reconnection, the population and helicity distribution on the

vortex structures significantly decrease. The smallest-scale vortex structure and the most effective

mixing occur with RerΓ = 10000 and RetΓ = 5000.

Keywords: Vortex-in-cell method, Large eddy simulation, Vortex interaction, Vortex ring, Vortex

tube

1 Introduction

Vortex reconnection is the key to understanding the fluid flow phenomena observed in various environ-

mental processes and engineering applications such as head collision of two vortex rings [1], dynamics

∗Corresponding author: nguyenvanluc@tdtu.edu.vn
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2

of vortex tubes [2], trailing vortices behind airplane [3], turbulent mixing layer in internal combustion

engines [4, 5], quantum turbulence in super-fluidity [6]. Comprehensive understanding of the vortex

interaction is essential to improving the design and controlling the related engineering devices. This

has attracted the interest of many researchers in recent years. Scheeler et al. [2] measured the helicity

and dynamics of intertwined thin-core vortex tubes in a viscous fluid flow. They showed that these

helical vortices are stretched or compressed by another vortex; however, the total helicity remains

unchanged. Winckelmans et al. [3] investigated reconnection of four counter-rotating vortex tubes

in a viscous fluid at ReΓ = 5000 using a vortex filament method. They showed the global vortex

tube dynamics and found Crow instability before their reconnection. Walmsley et al. [6] pointed out

that the collision and reconnection of two unidirectional quantized vortex rings of the equal radius in

the limit of zero temperature generate vortex loops of both smaller and larger scales. These larger

loops formed in the collision appear from random clusters of small quantized vortex rings. Jaque and

Fuentes [7] investigated the reconnection of two orthogonal vortex tubes with small numerical vis-

cosity corresponding to ReΓ = 15000. They showed that the time to start reconnection significantly

increases with the increase of the initial distance of two tubes. However, the reconnection lasts around

0.75 times of the vortex turnover for initial distances and two investigated vorticity profiles of the

tube. Therefore, they declared the reconnection as a convective process. Rees et al. [8] performed the

particle-based simulations of the dynamics of two antiparallel vortex tubes for a long time duration

at ReΓ = 10000. The elliptical-shaped rings along with axial flow are formed, corresponding to the

primary vortex tube reconnection. The vortex tube reconnection with and without an initial axial flow

manifests −7/3 and −5/3 slopes of energy cascade, respectively. Hussain and Duraisamy [9] discussed

the scaling and self-similarity of coherent structure reconnection of two vortex tubes located in an

antiparallel configuration in a viscous fluid and revealed a close relationship between the reconnection

and the slope of the energy spectrum. The reconnection was captured in detail using direct numerical

simulations (DNS) at low-to-moderate ReΓ ranging from 250 to 9000. The colliding threads deter-

mined as multiple vortex cores were found corresponding to the planar jet because of the effects of high

ReΓ . Beardsell [10] numerically studied the viscous reconnection of two vortex tubes with orthogonal

and antiparallel configurations in a range of ReΓ from 500 to 1000 using spectral simulations. The

reconnection time scales on ReΓ with a continuous power law from −1 to −1/2. They emphasized that

the initial orientations of two vortices do not influence their reconnection physics. The antiparallel

vortex tube reconnection was numerically investigated by McGavin and Pontin [11] in the context of

axial flow driving a vortex line twisting in same and opposite senses. The full reconnection manifesting

three-dimensional complex thread structures was captured for the same sense of twist, while for the

opposite twist, the two-dimensional reconnection was produced, causing the asymmetry of two vortex

threads as a result of reconnection. Cheng et al. [12] studied the dynamics of two and three coaxial

vortex rings via vortex leapfrogging and choreographies in a viscous fluid using a Lattice Boltzmann

method. The vortex leapfrogging was attained in the case of two coaxial vortex rings, while in the

case of three coaxial vortex rings, the leapfrogging alters from the inviscid model. They continued to

investigate the time evolution of a single elliptical viscous vortex ring at ReΓ in a range from 500 to

3000 [13]. They observed a cross linking of vorticity and splitting the vortex ring into two sub-rings

after the axis switching. The number of sub-rings increases with the increase in the ratio of two axes of

an elliptical vortex ring. Yao and Hussain [14] inspected the turbulence cascade model through vortex

reconnection, including the successive reconnection avalanche. At moderate Re, the successive recon-    
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3

nection generates a population of small-scale vortex rings, hairpin vortex structures, and vortex tangles

while at high Re, the reconnection splits into finner-scale turbulent structures, which produces the fine

vortex tangle avalanche. Motivated by the works of Lim and Nickels [1] and Chu et al. [15] related to

head-on vortex ring collision, Cheng et al. [16] numerically investigated the asymmetry development

of vortex ringlets in the outcome of face-to-face colliding vortex rings due to the effects of the core

size difference. The nonequivalent radial rates of each vortex ring’s induced velocity were found due

to the unequal core sizes in the unavailability of vortex rings’ azimuthal perturbations. In contrast, in

the existence of azimuthal perturbations, the occurring vortex ringlets change the outward direction

of the collision into the inclined plane. The head-on collision of two elliptical-shaped vortex rings was

further numerically investigated by Cheng et al. [17] to reveal the highly changeable flow topology

through the collision, including the development of subelliptical-shaped rings in the nonexistence of

azimuthal perturbation and availability of secondary vortex ringlets in the existence of azimuthal per-

turbation. The viscous reconnecting vortex rings arranged in various configurations at ReΓ = 250 was

numerically carried out by Chatelain et al. [18]. The dissipation of reconnection was obtained owing

to the stretched secondary-vortex structures transferring the kinetic energy to dissipated small-scale

structures. McKeown et al. [19] investigated the collisions of two counter-rotating vortex rings and

tubes at ReΓ = 4500 using DNS. They showed that the elliptic instability causes turbulent cascade

development. This instability induces the formation of antiparallel secondary filaments, and these

filaments interact together, resulting in the generation of smaller tertiary filaments.

In the engineering applications related to the turbulent mixing layer, a device’s efficiency can be

improved by mixing the turbulent vortex structures. Kato et al. [20] compared the liquid mixing due

to the vortex rings generated from a circular pipe and a jet mixer. They pointed out that the ring

enhances the mixing; however, the mixing time by the rings is shorter than that by a jet mixer with

the same average flow rate. Zawadzki and Aref [21] studied the mixing of nondiffusion scalar particles

through the noncoaxial collision of two identical rings. The mixing is improved as the distance between

two ring axes increases from zero to about 0.25 ring radius. A further increase of the distance results

in a reduction in the mixing because of the appearance of reconnection that impairs the stretching

of vortex configuration. Hernándeza and Reyes [22] investigated the mixing due to the symmetrical

collision of three and six vortex rings at Re < 1000 generated from jets arranged in 120◦ and 60◦

angle configurations, respectively. They reported that with three vortex rings, the collision induces

the pairing of adjacent vortex tubes in opposite directions, and then these pairs radially expand to

form secondary arm-like structures, whereas with six rings, these phenomena do not occur. However,

two new secondary vortex rings formed move upward and downward, perpendicular to the horizontal

collision plane for both cases. The mixing can be investigated using simulations of the collision of

a vortex ring with a vortex tube. Ishikawa et al. [4] investigated the collision of a vortex ring at

RerΓ = 500 with a vortex tube at circulation ratios Γ r/Γ t = 0.5− 2, where Γ r and Γ t are circulations

of the ring and tube at the outset. They showed that the ring is stretched and twisted around the

tube at a ratio smaller than unity. At a ratio equal to unity, the reconnection occurs between a part

of the ring and a part of the tube. At a ratio larger than unity, the ring passes through the tube. The

interaction of two vortices was clarified in the context of the laminar flow. The effects of the high Re on

vortex structure, the reconnection, and the mixing in these interactions have not yet been explained.

Therefore, this study will shed some light on this issue through simulations of the interaction of a

vortex ring at RerΓ = 10000 and a tube at RetΓ = 1000, 5000 and 10000 using a proposed vortex-in-cell    
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(VIC) method combined with a large eddy simulation (LES) model.

The VIC method is a hybrid Eulerian–Lagrangian vortex method, known as a redistributed vortex

particle method. It uses both the Eulerian and Lagrangian reference frames to describe the fluid flow

and the vorticity–velocity formula to calculate the flow momentum. It is a combination of the meshfree

and mesh-based methods for calculation of the fluid flow dynamics. In the meshfree methods, the fluid

is discretized into the vortex particles in the Lagrangian description. These particles move at their

velocities designated by the flow velocity at their positions and transport the flow momentum in term

of vorticity. There are some advantages of these methods compared to the traditional mesh-based

methods. First, the mesh-free methods require no mesh; therefore, they avoid the computational cost

in mesh generation and mesh distortion issues. Second, these methods reduce numerical dissipation

errors because of computing the convection term in linear form [23]. Solving the linear convection

equation is not constrained by the Courant–Friedrichs–Lewy condition, so allowing to choose a more

massive time step for simulations while ensuring the method’s stability. Besides, these methods offer

superior features in the analysis of vortex dynamics such as deformation, breakdown, coalescence, and

decay of vortices of various scales [24].

However, the meshfree methods have a high computational cost when the particle velocity is

obtained from the Biot–Savart integral. The velocity of a particle is calculated by a sum of (n − 1)

multiplications from the rest of particles, resulting in O(n2) operations for n particles [25]. Besides,

these methods face the particle distribution distortion because of clustering particles caused by the

natural Lagrangian motion of particles and fluid strains [26]. This clustering results in the lack

of particles in some regions, in which the continuity of flow is not satisfied. The disadvantage of

meshfree methods can be resolved using the Eulerian formulas for the velocity field and flow momentum

calculated using the mesh-based methods. Interpolation technique is the key to the connection between

the Lagrangian and Eulerian descriptions. The method redistributes particles onto the grid, at which

the vorticity of particles is interpolated from that at the Lagrangian positions, ensuring the flow

momentum conservation. This redistribution overcomes the problem of particle distribution distortion

adequately. Moreover, the computational cost reduces when computing the particle velocity on the

grid through solving the Poisson equation using a mesh-based method, such as the successive-over-

relaxation or fast Fourier transform methods with O(n
3
2 ) and O(n log n) operations, respectively. It

can be stated that the spirit of the VIC method is to evade the high cost in computing the Biot–Savart

integral in the meshfree methods while enjoying their features [27].

Birdsall and Fuss introduced the VIC method to solve plasma problems [28], and then Christiansen

adapted it to simulate the inviscid incompressible flows [29]. Subsequently, Cottet and Koumoutsakos

[30] altered it to simulate the viscous incompressible flows. Coquerelle and Cottet [31] combined it with

a penalization technique (a type of immersed boundary method) to investigate the flow around solid

obstacles. This method was extended to simulate the particle–laden [32] and gas–liquid [25, 27, 33]

two-phase flows. In this method, several models can be used to calculate the vortex diffusion such

as random walk [34], core spreading [35, 36], Fishelov [37], diffusion velocity [38], redistribution [39],

particle strength exchange [40, 41] and staggered-grid finite difference [24, 25, 27, 33]. These models

have a low accuracy [34], overlap issues (distorted particles) [35, 36, 38], great expense with a nice

order of particles [39, 40, 41], high dissipation errors [24, 25, 27, 33]. In this study, the 27-point and

conservation schemes are introduced to calculate the vortex diffusion and stretching, respectively.

In many practical situations of industrial interest, the flows are often at high Re. These flows are    
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5

turbulent, containing a wide range of length scales, from the largest coherent structures to the smallest

dissipation scales (see Mansfield et al. [42], Chatelain et al. [43], and Winckelmans et al. [3]). The grid

used in simulations often can not capture the smallest scales. Hence, the solver for the Navier–Stokes

equations needs to be completed with a sub-grid scale (SGS) model that correctly dissipates the energy

at the captured smallest scales to take into account the effects of the uncaptured scales. There are

a few research works on this topic, in which the turbulent models built are based on the meshfree

methods. Cocle et al. [44] employed the SGS effective stress tensor model directly coupled with the

velocity–vorticity equation. Chatelain et al. [43] used a hyper- and low-viscosity SGS model, based

on the finite difference schemes with the VIC method for validation. Mansfield et al. [42, 45] applied

the subfilter-scale (SFS) vorticity stress to account for the effects of unresolved velocity and vorticity

fluctuations. The SFS model is combined with a pure Lagrangian vortex method, in which the velocity

computation is performed using the Biot–Savart law to resolve the smallest structures of trailing wake

vortex. In this study, the authors combine the SFS model with the VIC method (LVIC) for the viscous

incompressible flows. It takes advantage of the VIC method, compared to the pure Lagrangian vortex

methods, as mentioned above. In addition, the LVIC is an efficient solver that can be implemented

using parallel computers, supporting the high Re flow simulations found in engineering. This method

is then applied to simulations of a vortex ring’s impingement on a vortex tube to clarify the aspects

of the reconnection of these two vortices. The rest of this paper is organized as follows: section

2 expresses the governing equations, section 3 describes the numerical method, section 4 gives the

discussions on results, followed by the conclusions in section 5.

2 Governing equations

The flow of a viscous incompressible fluid in a domain Ω ∈ R3 is described by the mass and momentum

Navier–Stokes equations as

∇ · u = 0, for x ∈ Ω , t ∈ R+
0 (1)

∂u

∂t
+
(
u · ∇

)
u = −1

ρ
∇p+ ν∇2u + g , for x ∈ Ω , t ∈ R+

0 (2)

where coordinate x = (x, y, z), velocity field u = (u, v, w), fluid density ρ ∈ R+, pressure p ∈ R3,

kinematic viscosity ν ∈ R+, time t, and gravitational acceleration g . The momentum equation in the

velocity–vorticity form is obtained applying the curl operation on sides of Eq. (2) as

∂ω

∂t
+
(
u · ∇

)
ω = ν∇2ω +

(
ω · ∇

)
u (3)

where the vorticity ω is expressed as

ω = ∇× u (4)

The second term on the left, and the first and second terms on the right of Eq. 3 are the vortex

convection, diffusion and stretching, respectively. The vector velocity can be resolved into the sum

of an irrotational (free-curl) and a solenoidal (divergence-free) vector fields based on the fundamental

theorem of vector calculus as

u = ∇φ+∇×ψ (5)

where φ and ψ are scalar and vector potentials of the vector velocity, respectively. Applying the curl

operation on sides of Eq. (5) and substituting properties ∇× (∇φ) = 0 and ∇·ψ = 0 into the results,
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6

the vector Poisson equation for the vector potential is obtained as

∇2ψ = −ω (6)

By substituting the velocity equation, Eq. (5), into the continuity equation, Eq. (1), the Laplace

equation for the scalar potential is written as

∇2φ = 0 (7)

3 Numerical method

3.1 Vortex-in-cell method

The VIC method discretizes the fluid into vortex particles p at the position x p, moving at the velocity

u(x p) and carrying the vorticity ω(x p). The particle velocity u(x p) is the flow velocity at the particle

location. From the momentum equation, Eq. (3), the motion of the vortex particles in the Lagrangian

frame can be expressed as
dx p
dt

= u(x p) (8)

dω(x p)

dt
= ν∇2ω(x p) +

(
ω(x p) · ∇

)
u(x p) (9)

Eq. (9) is rewritten in the conservation form of the vortex stretching, due to ∇ ·u = 0 and ∇ ·ω = 0,

as
dω(x p)

dt
= ν∇2ω(x p) +∇ ·

(
ω(x p)u(x p)

)
(10)

The particles are initially distributed at the regular grid, at which their vorticities are updated using

Eq. (10) to express the vortex diffusion and stretching. The particles move to the Lagrangian locations

x p by Eq. (8). The particle velocity u(x p) in Eqs. (8) and (10) is obtained using Eq. (5), where

the vector and scalar potentials, ψ and φ, are gained solving the Poisson and Laplace equations, Eqs.

(6) and (7), respectively. The particles are then redistributed onto the grid nodes x q, at which their

vorticities are interpolated from those at the Lagrangian locations as

ω(x q) =

Np∑
p

ω(x p)W
(xq − xp

∆x

)
W
(yq − yp

∆y

)
W
(zq − zp

∆z

)
(11)

where the grid nodes x q = (xq, yq, zq), the Lagrangian locations x p = (xp, yp, zp), ∆x, ∆y, ∆z are

sizes of a grid cell, Np is the vortex particle number, and W (x) is a kernel-interpolation function that

was introduced by Monaghan for the smoothed-particle hydrodynamics methods [46] and used for the

vortex methods [30] and expressed as

W (x) =


1− 5

2 |x|
2 + 3

2 |x|
3 if |x| ≤ 1

1
2(2− |x|)2(1− |x|) if 1 < |x| ≤ 2

0 if |x| > 2

(12)

By using this function, the first three flow momentum
(
M0 =

∫
Ω
ωdV , M1 =

∫
Ω
x × ωdV , and

M2 =

∫
Ω
x × (x × ω)dV

)
are conserved. The particle convection, Eq. (8), is solved using the    
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3.2 Vortex diffusion 7

second-order Runge–Kutta method as x ∗
p = x q + u(x q)

∆t

2

x p = x q + u(x ∗
p)∆t

(13)

where u(x ∗
p) is interpolated from the velocity field at the grid using Eq. (11). In Eq. (10), the

temporal variation is calculated using the second-order Adams–Bashforth method as

ωn+1(x ) = ωn(x ) + ∆t

(
3

2
Rhsn − 1

2
Rhsn−1

)
(14)

where Rhs indicates the right-hand side of Eq. (10).

The vorticity is a solenoidal vector based on the fundamental fluid mechanics, i.e., ∇ · ω = 0.

However, calculating the flow momentum (Eq. (10)) and redistributing the vortex particles (Eq. (11))

on the grid generate numerical errors, the vorticity field does not satisfy to be a solenoidal vector.

Therefore, the vorticity field needs to be recorrected in the calculation procedure. Two methods

can amend the vorticity field, such as the projection method in which solving a Poisson equation

is required, as detailed in ref. [25], and a method introduced in ref. [47], in which the vorticity is

modified using Eq. (4). In this study, the vorticity field is recorrected using Eq. (4) after every 50

time steps.

3.2 Vortex diffusion

Figure 1: Schematics of 27 points and their impact factors on calculation of ∇2ω at point (ijk)

The vortex diffusion is calculated using the 27-point schemes, in which 27 points surrounding the

considered point are used to calculate the Laplace operation, as shown in Fig. 1. This scheme is based

on the integral form of the Laplace operation [30, 40, 41, 47], written as

∇2ω(x ) =
2

ε2

∫
R3

(
ω(y)− ω(x )

)
ξε(x − y)dy (15)

where ξ(s) = −1

s
dγ(s)ds, γσ(x ) =

1

π
3
2σ3

exp−
x2

σ2 and σ is cutoff value. ∇2ω(x ) is calculated based

on the influence of ω of the surrounding particles with the impact of their distance |x − y |. In the
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3.3 Vortex stretching 8

VIC method, the flow momentum is calculated on the grid; therefore, the integral form of the Laplace

operation is also approximated on the grid. ∇2ω at the point (ijk) is computed as follows:

∇2ω = W1 + α1W2 + α2W3 (16)

where

W1 =
(ωi+1jk + ωi−1jk) + (ωij+1k + ωij−1k) + (ωijk+1 + ωijk−1)− 6ωijk

∆2

W2 =

(
(ωij−1k+1 + ωij+1k−1) + (ωij+1k+1 + ωij−1k−1) + (ωi+1jk+1 + ωi−1jk−1)

2∆2

+
(ωi−1jk+1 + ωi+1jk−1) + (ωi+1j−1k + ωi−1j+1k) + (ωi+1j+1k + ωi−1j−1k)− 12ωijk

2∆2

)
W3 =

(
(ωi−1j−1k+1 + ωi+1j+1k−1) + (ωi−1j+1k+1 + ωi+1j−1k−1)

3∆2

+
(ωi−1j−1k−1 + ωi+1j+1k+1) + (ωi−1j+1k−1 + ωi+1j−1k+1)− 8ωijk

3∆2

)
and α1 = 0.00077011858593, α2 = −α1 and ∆x = ∆y = ∆z = ∆. Coefficients α1 and α2 are achieved

by employing an iteration algorithm to impose the calculated results close to the analytical solution

of the Laplace operation of a harmonic function.

3.3 Vortex stretching

The vortex stretching is computed using the conservation schemes. In this scheme, the vortex stretch-

ing component in the x-direction
(
∇ · (ωu)

)
x

is given as(
∇ · (ωu)

)
x

= δx(ωxu) + δy(ωyu) + δz(ωzu) (17)

where the first term on the right of Eq. (17) is computed using approximations as

δxfi+ 1
2

=
−fi+2 + 27fi+1 − 27fi + fi−1

24∆x
+O(∆x)4 (18)

δxfi =
−δxfi− 3

2
+ 9δxfi− 1

2
+ 9δxfi+ 1

2
− δxfi+ 3

2

16∆x
+O(∆x)4 (19)

where f = ωxu. The first-order derivative of f with respect to x at point xi+ 1
2

(δxfi+ 1
2
) is calculated

using Eq. (18), and δxfi is then interpolated from δxfi+ 1
2

using Eq. (19).

3.4 Large eddy simulation combined with vortex-in-cell method

Consider a filtering function H(x ) with a length scale δ, the filtered flow quantity θ(x ) is expressed

as

θ(x ) =

∫
θ(y)H

(x − y

δ

)dy
δ3

(20)

and the fluctuation is given as θ
′
(x ) = θ(x )− θ(x ). Applying the filtering operation on both sides of

the vorticity equation, Eq. (3), the result is expressed as follows:

∂ω

∂t
+ (u · ∇)ω = ν∇2ω + (ω · ∇)u +∇ · (Φij − Φji) (21)
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3.5 Lagrangian method for scalar transport 9

The third term on the right of Eq. 21 expresses the sub-grid scale of the flow, where Φij = ωiuj−ωiuj .
Using properties of the Helmholtz stress related to gradient of the resolved vorticity, Φij is modeled

as

Φij = νt
∂ωi
∂xj

(22)

where νt is eddy diffusivity formulated by νt = (Cs∆)2
√

2SijSij , in which ∆ = 3
√

∆x∆y∆z, Sij =

1
2(δjui + δiuj) and Cs = 0.15 given by Mansfield et al. [42].

∂ωi
∂xj

and δjui are approximated using

Eqs. 18 and 19. Eq. (21) can be written in the Lagrangian reference frame of the vortex particles as

dx p
dt

= u(x p) (23)

dω(x p)

dt
= ν∇2ω(x p) +∇ ·

(
ω(x p) u(x p)

)
+∇ ·

(
Φij(x p)− Φji(x p)

)
(24)

3.5 Lagrangian method for scalar transport

In the VIC method, the vorticity is used to analyze the phenomena of vortex dynamics. However, in

the impingement’s case of two vortices, they deform. Clarifying the characteristics of the dynamics of

their interaction is complex. Therefore, their dynamics are further tracked using two distinctive ink

colors. The transport of ink color is governed by the convection equation for a passive scalar field α

as
∂α

∂t
+ (u · ∇)α = 0 (25)

The passive scalar transport is solved using the mesh-free method, in which the scalar field is discretized

into scalar particles carrying their scalar field. The above equation is written in the Lagrangian

reference frame of scalar particles α as
dα

dt
= 0 (26)

dxα
dt

= u(xα) (27)

Eq. 27 is solved using the fourth-order Runge–Kutta method as

xn+1
α = xnα +

∆t

6

[
u(xnα) + 2u(x 1) + 2u(x 2) + u(x 3)

]
(28)

where xnα and xn+1
α are the scalar particle position at nth and (n+ 1)th time steps, respectively, xnα is

known, ∆t is time step, and u(xnα), u(x 1), u(x 2) and u(x 3) are the particle velocity at locations xnα,

x 1, x 2 and x 3, respectively. These velocities are obtained from the flow velocity using the interpolation

scheme, Eq. 11. The locations x 1, x 2 and x 3 are calculated as follows:

x 1 = xnα + u(xnα)
∆t

2

x 2 = xnα + u(x 1)
∆t

2
x 3 = xnα + u(x 2)∆t

(29)

3.6 Numerical procedures

Supposing that the flow at n∆t is known, the flow at (n + 1)∆t is computed using the following

procedure:    
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10

• compute the sub-grid scale term in Eq. 24 using a model expressed by Eq. 22 to express the

unresolved scales of the flow;

• compute the flow momentum in vorticity ω(x p) using (24) to express the vortex diffusion,

stretching and sub-grid scale of the flow;

• compute the vortex convection x p using Eq. (23);

• redistribute the particles onto the grid nodes using Eq. (11);

• compute the vector potential ψ using the Poisson equation, Eq. (6);

• compute the velocity field u using Eq. (5);

• recorrect the vorticity field to satisfy the condition of a solenoidal vector using Eq. (4);

In this study, the spatial and temporal derivatives calculation has the fourth- and second-order

accuracy, respectively. The irrotational vector field ∇φ is set to be zero. The Poisson equation, Eq.

(6), is solved employing the Fourier method, in which the Fourier transform is computed using the

FFTW3 library [48]. The periodic condition is applied at six surfaces of the domain, at one of which

five ghost points are set to treat this condition. For example, at the planes x = xmin and x = xmax,

the flow quantity f at the ghost points is respectively expressed as

f (−i, j, k) = f (nx− i, j, k) for 0 ≤ i ≤ 5 & i ∈ Z (30)

f (nx+ i, j, k) = f (i, j, k) for 0 ≤ i ≤ 5 & i ∈ Z (31)

where f = (ω,ψ,u) and nx is number of the grid nodes in the x direction. The passive scalar

transport is calculated simultaneously with the flow solver.

4 Results and discussions

The current method is validated using simulations of Taylor–Green vortex flow (TGVF) at two

Reynolds numbers (defined as Re = 1/ν [49, 50]) 200 and 2000. The scalar transport calculation

is evaluated using simulations of the deformation of a scalar sphere immersed in an ideal vortex flow.

Subsequently, characteristics of the interaction between two vortices are investigated using simulations

of the collision of a vortex ring with a vortex tube.

4.1 Validation for calculation of vortex diffusion and stretching

First, the vortex diffusion and stretching calculations are evaluated using simulations of TGVF at

Re = 200. The TGVF at the outset is expressed as [49, 50]
u = cos(x) sin(y) cos(z)

v = − sin(x) cos(y) cos(z)

w = 0

&


ωx = − sin(x) cos(y) sin(z)

ωy = − cos(x) sin(y) sin(z)

ωz = −2 cos(x) cos(y) cos(z)

(32)

where x, y, z ∈ [0, 2π]. Four grid resolutions of 323, 643, 963 and 1283 are used for the convergence

study, and the time step ∆t = 0.001 is set in simulations.

Figs. 2 shows the time evolution of total enstrophy En(t) and kinetic energy Ek(t) of TGVF at

Re = 200, in which En(t) and Ek(t) are expressed as

En(t) =
1

2LxLyLz

∫∫∫
Ω
ω2dV (33)
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4.1 Validation for calculation of vortex diffusion and stretching 11

Figure 2: Time evolution of the total enstrophy and kinetic energy of TGVF at Re = 200: (a) Total

enstrophy; (b) Total kinetic energy. Grid nodes are 323, 643, 963 and 1283. Present (Pres.) results of

the enstrophy are compared to the existing simulation results [49] represented by a red-square-dotted

curve [Reproduced from Sharm and Sengupta, with the permission of AIP Publishing]

Figure 3: Time evolution of the total enstrophy and kinetic energy of TGVF at Re = 200: (a) Total

enstrophy; (b) Total kinetic energy. Grid nodes are 1283, and four time steps used in simulations are

dt(∆t) = 0.008, 0.004, 0.002 and 0.001. Present (Pres.) results of the enstrophy are compared to the

existing simulation results [49] represented by a red-square-dotted curve [Reproduced from Sharm and

Sengupta, with the permission of AIP Publishing]

Ek(t) =
1

2LxLyLz

∫∫∫
Ω
u2dV (34)

where Lx, Ly and Lz are the computational domain sizes. In Fig. 2, the present results are obtained

utilizing the 27-point and conservation schemes to calculate the vortex diffusion and stretching, re-

spectively. The present results are convergent with the increase in grid resolution. The estimated

enstrophy values at the grid node number of 1283 have good agreement with those provided by Sharm

and Sengupta [49]. Therefore, the calculation of vortex diffusion and stretching can be estimated

using the 27-point and conservation schemes well. The effects of the time step on the time evolution

of the total enstrophy and kinetic energy are also investigated, as shown in Fig. 3. It is observed that    
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4.1 Validation for calculation of vortex diffusion and stretching 12

the curves of the total enstrophy and kinetic energy with the time steps of ∆t = 0.008, 0.004, 0.002

and 0.001 seem to overlap and agree well with those given by Sharm and Sengupta [49]. Therefore,

at this Re, the time step slightly affects the simulation results. The enstrophy increases remarkably

from the beginning to t = 6, due to vortex stretching’s effects greater than those of vortex diffusion.

In this period, the vortices are stretched strongly because of their interaction, as further explained

later. From t = 6, the enstrophy decreases, owing to a more significant effect of vortex diffusion. The

total kinetic energy significantly reduces in whole time evolution because it is transferred to thermal

energy.

Figure 4: Time evolution of the vortex structure of TGVF at Re = 200: (a) Contours of ωy are plotted

in a range from −1 to 1 at plane y = π/2; positive and negative values are represented by blue and

red colors, respectively; (b) Contour surfaces of |ω| are plotted in a range from 0.5 to 2; (c) Isovalues

of ωz = ±1 are represented using red and green surfaces, respectively

Fig. 4 shows the time evolution of the vortex structure of TGVF at Re = 200, in which plots of

contours of the vorticity component ωy, the vorticity magnitude |ω|, and isosurfaces of the vorticity

component ωz are shown in the first, second and third rows, respectively. At t = 0, the vortex structure

is composed of large eddies arranged alternately. These eddies diffuse and are stretched strongly due

to the fluid viscosity and three-dimensional flow effects, respectively, as seen at t = 5. The vortices

break down into smaller vortices at t = 10. At t = 15, some low-energy vortices are formed, and the

strength of these eddies reduces with time.
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4.2 Validation for LES model 13

4.2 Validation for LES model

Figure 5: Time evolution of the enstrophy of TGVF at Re = 200: Grid nodes are 323, 643, 963 and

1283. Present (Pres.) results are compared to the existing simulation results [49] represented by red-

square-dotted curve [Reproduced from Sharm and Sengupta, with the permission of AIP Publishing]

Figure 6: Time evolution of the enstrophy of TGVF at Re = 2000 obtained with and without LES

model: Grid resolutions 643, 1283, 2563, 2723 and 3843; time step ∆t = 0.001. Present results are

compared to those by the existing simulation results [49] (denoted by Sh&Se in legend) with 4003

grid nodes represented by a red-square-dotted curve [Reproduced from Sharm and Sengupta, with the

permission of AIP Publishing]

The combination of the LES model with the VIC method is evaluated using simulations of TGVF

at Re = 200 and 2000. Fig. 5 shows the time evolution of the enstrophy of TGVF at Re = 200. The

present results are obtained with and without the LES model. At the grid resolution of 323, the LES

model’s effects on the results are trivial. That is because the small-scale fluid motions do not exist    
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4.2 Validation for LES model 14

at this number of grid nodes. However, these effects increase significantly when the grid nodes are

643 and 963. Particularly, the results obtained using the LES model at grid nodes 963 are the same

as those without the LES model at the grid nodes 1283 and agree well with the simulation results

by Sharm and Sengupta [49]. Therefore, using the LES model with a lower grid resolution can still

capture the flow characteristics well.

The time evolution of the enstrophy of TGVF at Re = 2000 is shown in Fig. 6. At this Re, five

grid resolutions are 643, 963, 1283, 2563, 2723 and 3843 used for simulations, as depicted in the figure

legend. At the grid nodes of 643, the results obtained using the LES model are not so different from

those without the LES model. However, this difference increases considerably at the grid nodes of 1283

and 2563. The rate of convergence of the method with the LES model is higher than those without the

LES model. The results gained using the LES model with grid nodes of 2563 and 2723 approach those

without the LES model with 3843 and 4003 ([49]) grid nodes, respectively. These results prove that

the VIC method, combined with the LES model, can catch the global characteristics of this turbulent

flow well. The total enstrophy of the flow increases strongly from the beginning to about t = 9, due

to the effects of stretching of vortices caused by their interaction. From t = 9, the total enstrophy

reduces significantly because the vortices break down into smaller vortices, as further explained later.

The breakdown leads to a decrease in the vortex strength; in other words, the vorticity values reduce.

Figure 7: Time evolution of the vortex structure of TGVF at Re = 2000: (a) Contours of ωy are

plotted in a range from −1 to 1 at plane y = π/2; (b) Contours of ωy are plotted in a range from

−1 to 1 at plane y = π; the positive and negative values are represented by red and blue contours,

respectively

Figs. 7 and 8 present the time evolution of the vortex structure of the TGVF at Re = 2000, in

which plots of the vorticity component ωy at planes y = π/2 and y = π are shown in Fig. 7 while

plots of the vorticity magnitude |ω| and component ωz are indicated in Fig. 8. At t = 0, the vortex

structure is composed of large eddies arranging alternately. These eddies deform strongly because of

their interaction at t = 5. At t = 10, the vortices continue deforming and break down into small

vortices. At t = 15 and 20, these vortices continue to break down into smaller vortices and decay with
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4.3 Validation for calculation of scalar transport 15

Figure 8: Time evolution of the vortex structure of TGVF at Re = 2000: (a) Contour surfaces of

|ω| = 0.5–5; (b) Isosurvalues of ωz = ±1 are represented by the red and green surfaces, respectively

time.

Fig. 9 shows the energy spectrum E(k) of the TGVF at t = 10, 15 and 20 at Re = 2000 using

DNS and LES model, in which the E(k) is calculated as follows [51]:

E(k) = 2exp

(
−
(
k 3
√

∆x∆y∆z
)2

2

)( 1

2π

)2
∑np

i=1

∑np

j=i+1

(∆x∆y∆z)2 sin(k|x i − x j |)
k|x i − x j |

ωi · ωj (35)

where k = 1, 2, ..., n is wavenumbers, and np is number of vortex particles. The calculation of E(k)

with O(n2
p) operations is expensive; therefore, the E(k) is computed at several time steps. At the large

scales (low wavenumbers) of vortex structures, the vortices are stretched because of their interaction.

At intermediate scales (inertial subrange), there is a transfer of energy from large scales of vortex

structures to small scales, known as energy cascade. From the figure, it is observed that in this

subrange, the calculated energy spectrum obeys the k−3/5 law of the Kolmogorov’s hypothesis. At

small scales (dissipation range), the energy of vortices is transferred into thermal energy. The energy

spectrum decreases with time due to the effects of the fluid viscosity. The smallest scales corresponding

to the highest wavenumber of the flow are observed at t = 10; in other words, the highest population

of the small-scale vortex structures occurs. This population decreases with time, corresponding to a

reduction in the intensity of vortices’ interaction in the domain. The results in the inertial subrange

obtained using LES model agree well with those using DNS. In the dissipation range, the LES model

does not produce the highest wavenumber, as given using DNS; however, it can capture a large part

of the flow scales in this range. Generally, the present method combined with the LES model can

produce well the local characteristics of the turbulent flow at this Re.

4.3 Validation for calculation of scalar transport

Scalar transport governed by Eq. 25 is calculated using the Lagrangian method. This method is

verified using a benchmark simulation of a scalar sphere’s deformation in an ideal vortex flow [52]. The
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4.3 Validation for calculation of scalar transport 16

Figure 9: Energy spectrum E(k) of TGVF at times t = 10, 15 and 20 at Re = 2000. Solid and dash

curves are obtained using DNS with 3843 and LES model with 2723 grid nodes, respectively

sphere at the beginning has a radius of r0 = 0.15 and is positioned at (x0, y0, z0) = (0.35, 0.35, 0.35).

The vortex flow is described as
u = 2 sin2(πx) sin(2πy) cos(2πz) cos(πt/T )

v = − sin(2πx) sin2(πy) sin(2πz) cos(πt/T )

w = − sin(2πx) sin(2πy) sin2(πz) cos(πt/T )

(36)

where T is period of the flow, and x, y, z ∈ [0, 1]. The deformation of the scalar field is tracked by its

boundary surface, in which 8984 scalar particles are distributed regularly on the spherical surface at

t = 0. Time step is tested as ∆t = 0.001, 0.005 and 0.01, and the domain is divided into 643 cube

cells.

Figure 10: Time evolution of deformation of a scalar sphere in an ideal vortex flow with period T = 3.

(a) t = 0, (b) t = 0.5, (c) t = 1.0, (d) t = 1.5, (e) t = 2.0, (f) t = 2.5 and (g) t = 3.0

Figs. 10 and 11 show the time evolution of deformation of a scalar field in an ideal vortex flow with
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4.4 Reconnection of a vortex ring and a vortex tube 17

Figure 11: Time evolution of deformation of a scalar sphere in an ideal vortex flow with period T = 6.

(a) t = 0, (b) t = 0.5, (c) t = 1.0, (d) t = 1.5, (e) t = 2.0, (f) t = 2.5, (g) t = 3.0, (h) t = 3.5, (i)

t = 4.0, (j) t = 4.5, (k) t = 5.0, (l) t = 5.5 and (m) t = 6.0

period T = 3 and 6, respectively. At t = 0, the boundary of the scalar field is a spherical surface. This

field deforms with the time evolution because of stretching by two vortices. The maximal deformation

is at t = T/2, t = 1.5 and t = 3 in cases I and II, as shown in Figs. 10 and 11, respectively. Then, the

scalar field boundary recovers gradually, and it is expected to reach its original state at t = T . The

relative error between the calculated and analytical results at t = T is defined as

ε =

Nα=8984∑
i=1

|
√

(xα − x0)2 + (yα − y0)2 + (zα − z0)2 − r0|
r0Nα

(37)

The relative error is ε = 0.24% for both study cases. The effects of the time step on the results are

trivial. Thus, the solver for the convection equation, Eq. 25, can capture the passive scalar transport

adequately.

4.4 Reconnection of a vortex ring and a vortex tube

The impingement of a vortex ring on a vortex tube is investigated to clarify two vortices’ reconnection.

A vortex ring at a Reynolds number (RerΓ = Γ r0 /ν) is first simulated to verify the capability of the

current method to capture this flow. A following Gaussian distribution function describes the vortex

ring at the outset:

(ωr, ωθ, ωz) =

(
0,
Γ r0
πσ2

e−
ρ2(x,y,z)

σ2 , 0

)
(38)

where ρ2(x, y, z) =
(
r0−

√
(x− xr0)2 + (y − yr0)2

)2
+(z−zr0)2, ring radius r0 = 1, core radius σ = 0.24r0,

initial circulation Γ r0 = 1, initial position (xr0, y
r
0, z

r
0) = (0, 0, 3r0). The dimensionless variables are
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4.4 Reconnection of a vortex ring and a vortex tube 18

defined as x ∗ = x/r0, u∗ = ur0/Γ0, t∗ = tΓ0/r
2
0, ω∗ = ωr2

0/Γ0, ∇∗ = r0∇ and ReΓ = Γ0/ν. The flow

momentum, Eq. 21, is rewritten in the dimensionless form as

∂ω∗

∂t∗
+ (u∗ · ∇∗)ω∗ =

1

ReΓ
∇∗2ω∗ + (ω∗ · ∇∗)u∗ +∇∗ · (Φ∗

ij − Φ∗
ji) (39)

The ring moves vertically downward at RerΓ = 10000. The non-dimensional time step (∆t∗) is set to

be 0.002, and a computational domain (−2.5r0, 2.5r0) × (−5r0, 5r0) × (−5r0, 5r0) is discretized into

cube cells. Four grid resolutions are used for the convergence study, as explained later.

Figs. 12, 13 and 14 (a) show the time evolution of the total enstrophy, kinetic energy, effects of the

vortex diffusion, stretching, sub-grid scale terms on the rate of change of enstrophy. The effects of the

vortex diffusion, stretching, and sub-grid scale terms on the rate of change of enstrophy are formulated

by Eq. 46, as shown in the appendix A. From these figures, it is observed that the simulation results

are convergent with the increase in the grid resolution. The results using 150×300×300 grid nodes is

close to those using 160× 320× 320 grid nodes. Therefore, the grid resolution 160× 320× 320 is used

for other simulations. The total enstrophy slightly increases in the early stage, owing to the effects

of the vortex stretching and sub-grid scale term greater than those of the vortex diffusion, and then

it decreases. It is noted that the vortex diffusion causes a decrease in the total enstrophy while the

vortex stretching and sub-grid scale term enhance the values of the vorticity, as shown in Figs. 13 and

14 (a). The kinetic energy gradually reduces in the whole time evolution because it is transferred into

thermal energy.

Fig. 14 (b) shows the time evolution of vertical displacement of the vortex ring, where the dis-

placement is expressed as

Zc(t
∗) =

∫
z∗ω∗

ydx
∗dz∗/

∫
ω∗
ydx

∗dz∗ (40)

The ring moves vertically downward at an estimated speed of u∗T = 0.2202. Moreover, the translation

velocity of a Gaussian vortex ring can be calculated using the formula as [53]

u∗T =
Γ0

4πr0

(
ln

8r0

σ
− 0.558

)
(41)

The relative error of the translation velocity values obtained from the simulation and Eq. 41 is 4

%. Therefore, at this grid resolution and time step, the method can produce the characteristics of

the vortex ring at this RerΓ well. Fig. 15 shows contours of Q values representing the local balance

between the shear strain and vorticity magnitude [54] and distribution of the flow velocity on the

x-z plane at t∗ = 30. Q is expressed as Q = 0.5(||Ω̄||2 − ||S̄||2), where Sij = 0.5(δ∗ju
∗
i + δ∗i u

∗
j ) and

Ωij = 0.5(δ∗ju
∗
i − δ∗i u∗j ). The vortex ring shape is almost conserved in the whole time evolution.

The characteristics of the interaction of a vortex ring and a vortex tube are investigated. The

Gaussian distribution expresses the vortex tube at the beginning as

(ωx, ωy, ωz) =

(
0,

Γ t0
πσ2

e−
R2(x,y,z)

σ2 , 0

)
(42)

where R2(x, y, z) = (x − xt0)2 + (z − zt0)2, core radius σ = 0.24r0, and initial position (xt0, y
t
0, z

t
0) =

(0, 0, r0). The circulation ratios of the ring to tube are investigated in three cases as Γ t0/Γ
r = 0.1, 0.5

and 1. RerΓ is fixed to be 10000, and RetΓ are 1000, 5000, 10000. The computational domain and time

step are set as the same as in the case of simulation of a single vortex ring.

Figs. 16 and 17 show the time evolution of the interaction of a vortex ring and a vortex tube, in

which the structure of vortices are described using the contours of Q values and the helicity |u∗×ω∗|
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4.4 Reconnection of a vortex ring and a vortex tube 19

Figure 12: Time evolution of total enstrophy and kinetic energy of the flow induced by a single vortex

ring motion at RerΓ = 10000: (a) total enstrophy, En; (b) total kinetic energy, Ek. Grid nodes are

130× 260× 260, 140× 280× 280, 150× 300× 300 and 160× 320× 320

Figure 13: Time evolution of the effects of vortex diffusion and stretching on rate of change of enstrophy

of the flow induced by a single vortex ring motion at RerΓ = 10000: (a) diffusion effects; (b) stretching

effects

while their cores are expressed by local enstrophy values. In the case of RerΓ = 10000 and RetΓ = 1000,

the ring rapidly moves toward the tube and impinges on it at t∗ = 8. The ring shape is almost conserved

in the whole time evolution. This is explained by the fact that the effects of the tube on the ring

are trivial. The ring core slightly fluctuates at t∗ = 16, and this fluctuation increases with time,

as shown at t∗ = 20, 24, and 28. In the impingement region, the tube’s strength reduces, and the

contours of Q representing the tube disappear, as seen at t∗ = 8, 12 and 16. The tube breaks into

two parts, and they are entrained by the ring wake, as observed at t∗ = 20, 24, and 28. In the case

of RerΓ = 10000 and RetΓ = 5000, the tube is deformed at t∗ = 8 and 12, and a part of the tube is

detached at t∗ = 16. This detached part rolls around the ring, leading to the generation of vortices

of small scales, as seen at t∗ = 20. The tube reconnects at this time. The detached part of the tube

continues to interact forcefully with the ring to induce the formation of vortices of various scales, as

seen at t∗ = 24 and 28. In the case of RerΓ = 10000 and RetΓ = 10000, the ring impinges on the tube

at t∗ = 8. At t∗ = 12, the ring breaks into two parts, one of which interacts with the leaving part
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4.4 Reconnection of a vortex ring and a vortex tube 20

Figure 14: (a) Time evolution of effects of sub-grid scale term on rate of change of enstrophy of the flow

induced by a single vortex ring motion at RerΓ = 10000. (b) Time evolution of vertical displacement

of vortex ring; the displacement is determined as Zc(t
∗) = −0.2202t∗ + 2.9978, as shown in the legend

Figure 15: Contours of Q value and distribution of flow velocity on x-z plane passing through the

vortex ring centerline at t∗ = 30. Q = 0.5(||Ω̄||2 − ||S̄||2), where Sij = 0.5(δ∗ju
∗
i + δ∗i u

∗
j ) and Ωij =

0.5(δ∗ju
∗
i − δ∗i u∗j )

of the tube to form the secondary ring moving downward. This ring is unstable, deforms strongly at

t∗ = 16, and it is distorted at t∗ = 20, 24 and 28. Another one replaces the leaving part of the tube to

reconnect the tube at t∗ = 12 and 16. This reconnected tube is twisted counterclockwise to the y-axis

at t∗ = 20, 24 and 28, leading to the generation of small-scale vortices around the tube. There are

two strong interaction regions in which the ring impinges on the tube. The secondary ring stretches

these interaction regions toward its motion to form large-scale vortices, as seen at t∗ = 16 and 20.

These vortices interact together and with the vortex wake formed behind the secondary ring to form

the small-scale vortices, as seen at t∗ = 24 and 28.

Fig. 18 depicts the time evolution of the Q and local helicity distribution (H = u∗ ·ω∗) representing

twisting of the vortex structure. In the case of RerΓ = 10000 and RetΓ = 1000, the helicity is negligible

in the period from t∗ = 0 to t∗ = 20. The entrained part of the tube is slightly twisted, as seen at

t∗ = 24 and 28. In the case of RerΓ = 10000 and RetΓ = 5000, the helicity appears in the connection

regions at t∗ = 12 and then spreads to both sides of the tube at t∗ = 16, due to the effects of the ring

wake. The detached part of the tube is twisted strongly because of the secondary ring’s effects, as

seen at t∗ = 16. This detached part affects the secondary ring and generates the twisted small-scale

vortices at t∗ = 20. The helicity distribution is disturbed downstream, as seen at t∗ = 24, 28. In the
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4.4 Reconnection of a vortex ring and a vortex tube 21

Figure 16: Time evolution of the interaction of a vortex ring and a vortex tube: gray sur-

faces represent isovalues of Q while red surfaces represent contours of local enstrophy |ω∗|2. (a)

RerΓ = 10000 & RetΓ = 1000; (b) RerΓ = 10000 & RetΓ = 5000; (c) RerΓ = 10000 & RetΓ = 10000

case of RerΓ = 10000 and RetΓ = 10000, the helicity appears at t∗ = 8 in the connection regions, then

increases significantly at t∗ = 12. The secondary ring is twisted in the whole time evolution. The

helicity on the tube moves far away from the connection points, as seen at t∗ = 20, 24, and 28. At

t∗ = 28, the helicity on the tube is less; in other words, the tube is more stable.

Fig. 19 shows the vortex structure expressed in the vorticity component ω∗
z representing the

stretching of vortices caused by three-dimensional effects of the flow at t∗ = 12 and 14. In the case of

RerΓ = 10000 and RetΓ = 1000, the vorticity component ω∗
z appears on the entrained part of the tube

and is not formed on the ring; in other words, the three-dimensional effects of the flow are trivial. In

the cases of RerΓ = 10000 and RetΓ = 5000 or RetΓ = 10000, ω∗
z is formed on both the ring and tube.

Especially, there are pairs of small-scale vortices with opposite signs of ω∗
z around the tube and behind
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4.4 Reconnection of a vortex ring and a vortex tube 22

Figure 17: Time evolution of the interaction of a vortex ring and a vortex tube: gray surfaces

represent isovalues of Q while red surfaces represent contours of local helicity |u∗ × ω∗|. (a)

RerΓ = 10000 & RetΓ = 1000; (b) RerΓ = 10000 & RetΓ = 5000; (c) RerΓ = 10000 & RetΓ = 10000

the secondary ring.

Fig. 20 shows the time evolution of the passive scalar particles utilized to track the dynamics of

two vortices. The red and blue scalar particles represent the vortex ring and tube, respectively. In the

case of RerΓ = 10000 and RetΓ = 1000, the particles move in an ordered pattern, as seen at t∗ = 0, 8,

and 12. The tube-scalar particles are entrained by the ring, as observed at t∗ = 8, 20, and 28. The

ring-scalar particles’ order is slightly disturbed by the tube effects at t∗ = 20 and 28. In the case of

RerΓ = 10000 and RetΓ = 5000, the tube- and ring-scalar particles mix because of the appearance of the

turbulent vortex structures, as seen at t∗ = 20 and 28. In the case of RerΓ = 10000 and RetΓ = 10000,

the breakdown and reconnection of the vortex ring and tube are clearly observed at t∗ = 16, 20, and

28. A cluster of the red-ring particles replaces the blue-leaving-tube particles to reconstruct the tube.    
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4.4 Reconnection of a vortex ring and a vortex tube 23

Figure 18: Time evolution of the interaction of a vortex ring and a vortex tube: gray surfaces represent

isovalues of Q while yellow and blue surfaces represent those of positive and negative values of the local

helicity (H = u∗ · ω∗), respectively. (a) RerΓ = 10000 & RetΓ = 1000; (b) RerΓ = 10000 & RetΓ =

5000; (c) RerΓ = 10000 & RetΓ = 10000

Another cluster of the red-ring particles connects with the blue-leaving-tube particles to construct a

new secondary ring. The red-ring and blue-tube particles behind the secondary ring are disturbed

because of the effects of the turbulent structures induced by the interaction of the secondary ring wake

with connection vortices.

Fig. 21 shows the energy spectrum of the flow induced by the interaction between a vortex ring

and a vortex tube at t∗ = 0, 12, 20, and 28 in three simulation cases. In the case of RerΓ = 10000 and

RetΓ = 1000, the energy does not change with time because the effects of the vortex tube on the vortex

ring are trivial, and the small-scale vortex structures are not generated. This energy is dominated

by the flow induced by the vortex ring motion. In the case of RerΓ = 10000 and RetΓ = 5000, the    
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4.4 Reconnection of a vortex ring and a vortex tube 24

Figure 19: Time evolution of the interaction of a vortex ring and a vortex tube: Isovalues of Q are

represented by gray surfaces while yellow and blue surfaces represent positive and negative values of ω∗
z .

(a)RerΓ = 10000 & RetΓ = 1000; (b)RerΓ = 10000 & RetΓ = 5000; (c)RerΓ = 10000 & RetΓ = 10000

population of the small-scale vortex structures at the high wavenumbers increases, and the smallest-

scale vortex is observed at t∗ = 28. This is explained by the fact that the leaving part of the tube

forcefully interacts with the ring in the whole time evolution. In the case of RerΓ = 10000 and

RetΓ = 10000, the population of the small-scale vortex structure increases from the beginning to

t∗ = 20 before a reduction at t∗ = 28. This is because after the reconnection, the secondary ring

and tube become more stable. In the inertial subrange, the energy spectrum correlates with the

wavenumbers by E(k) ∼ k−3/2. The present results do not fit the curve of k−5/3 in the Kolmogorov’s

hypotheses because the current turbulent flow is not isotropic.

Fig. 22 shows a comparison of the energy spectrum of the flow induced by the interaction of a

vortex ring at RerΓ = 10000 and a vortex tube at RetΓ = 5000 and 10000. It is observed that the energy

of the large-scale vortices at the low wavenumbers ranging from 1 to 7 in the case of RerΓ = 10000 and

RetΓ = 10000 is higher than that with RerΓ = 10000 and RetΓ = 5000. This is explained by the fact

that the large-scale vortices at higher ReΓ produce higher energy. However, with wavenumbers higher

than 10, the energy of the small-scale vortices in the case of RerΓ = 10000 and RetΓ = 10000 is lower

than with RerΓ = 10000 and RetΓ = 5000. This is because a strong interaction of a vortex ring and a    
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4.4 Reconnection of a vortex ring and a vortex tube 25

Figure 20: Time evolution of the interaction of a vortex ring and a vortex tube: Red and blue passive

scalar particles represent the vortex ring and tube, respectively. (a) RerΓ = 10000 & RetΓ = 1000; (b)

RerΓ = 10000 & RetΓ = 5000; (c) RerΓ = 10000 & RetΓ = 10000

vortex tube with RerΓ = 10000 and RetΓ = 5000 occurs after their collision while with RerΓ = 10000

and RetΓ = 10000, after the reconnection, the flow becomes more stable. The population of the

small-scale vortex structures in the case of RerΓ = 10000 and RetΓ = 5000 is higher than those with

RerΓ = 10000 and RetΓ = 10000. The smallest-scale vortex structure is observed with RerΓ = 10000

and RetΓ = 5000. It can state that that the most effective mixing is observed with RerΓ = 10000 and    
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4.4 Reconnection of a vortex ring and a vortex tube 26

(a) (b) (c)

Figure 21: Energy spectrum of the flow induced by the interaction of a vortex ring and a vortex

tube: Dashed lines represent (−3/2) slope lines. (a) RerΓ = 10000 & RetΓ = 1000; (b) RerΓ =

10000 & RetΓ = 5000; (c) RerΓ = 10000 & RetΓ = 10000

Figure 22: Comparison of the energy spectrum of the flow induced by the interaction of a vortex ring

at RerΓ = 10000 and a vortex tube at RetΓ = 5000 and 10000

RetΓ = 5000.

Figs. 23, 24 and 25 show the time evolution of the total enstrophy, kinetic energy, and the effects

of the vortex diffusion, stretching, and sub-grid scale term on the rate of change of enstrophy of the

flow induced by the interaction of a vortex ring and a vortex tube. In the case of Rer = 10000 and

Ret = 1000, the total enstrophy is trivial and almost remains unchanged in the whole time evolution.

This is because the tube’s effects on the ring are negligible, and the flow induced by the ring dominates

in the whole domain. This aspect is further explained by the fact that the effects of the vortex diffusion,

stretching, and sub-grid scale term on the rate of change of enstrophy are trivial, as shown in Fig.

25. In the case of Rer = 10000 and Ret = 5000, the total enstrophy strongly increases from t∗ = 7.5

to 25 due to the sum of effects of the vortex stretching and sub-grid scale term greater than those
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4.4 Reconnection of a vortex ring and a vortex tube 27

Figure 23: Time evolution of total enstrophy and kinetic energy of the flow induced by the interaction

of a vortex ring and a vortex tube: (a) Rer =10 000 & Ret = 1000; (b) Rer =10 000 & Ret = 5000;

(c) Rer =10 000 & Ret =10 000

Figure 24: Time evolution of total enstrophy and kinetic energy of the flow induced by the interaction

of a vortex ring and a vortex tube: (a) total enstrophy, En; (b) total kinetic energy, Ek

of vortex diffusion. In this stage, the leaving part of the tube interacts strongly with the ring to

generate small-scale vortices. The enstrophy then reduces in the final stage, owing to the effects of

the vortex diffusion greater than those of the vortex stretching and sub-grid scale term. The vortices

forcefully decay in this stage. In the case of Rer = 10000 and Ret = 10000, the total enstrophy

drastically increases from t∗ = 7 to 15, due to a strong interaction between the ring and tube. During

this stage, the reconnection of the vortex ring and tube occurs. The effects of vortex stretching and    
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28

Figure 25: Time evolution of the effects of vortex diffusion, stretching and sub-grid scale term on rate

of change of enstrophy of the flow induced by the interaction of a vortex ring and a vortex tube

sub-grid scale term are greater than those of the vortex diffusion, leading to a great generation of

the small-scale vortex structures. The total enstrophy almost remains unchanged from t∗ = 15 to

20, due to a balance of the generation of new small-scale vortices and decay of the existing vortices.

The total enstrophy decreases in the ultimate stage due to the strong effect of vortex diffusion. From

t∗ = 15, the total enstrophy in this case are lower than those with Rer = 10000 and Ret = 5000. This

is explained as the flow becomes more stable after the reconnection, while the flow is unstable in the

case of Rer = 10000 and Ret = 5000 because the reconnection on the vortex ring does not happen.

The total kinetic energy gradually reduces with time in three simulation cases. The most decrease is

observed with Rer = 10000 and Ret = 5000, followed by the cases of Rer = 10000 and Ret = 10000

and Rer = 10000 and Ret = 1000. It is observed that the more the flow is unstable, the more the

kinetic energy is lost due to its transfer to thermal energy.

5 Conclusions

A vortex-in-cell (VIC) method combined with a large eddy simulation (LES) model was developed for

viscous incompressible flows. The vortex diffusion and stretching are calculated using the proposed

27-point and conservation schemes, respectively, which were verified using the benchmark simulations

of the Taylor–Green vortex flow (TGVF) at the Reynolds number Re = 200. The results indicate that

these schemes satisfy the convergence of a numerical method and produce the flow characteristics well.

The combination of the VIC method with the LES model (LVIC) was evaluated using simulations of

the TGVF at Re = 200 and 2000. It was proved that the LVIC could capture the characteristics of

the turbulent flows well. Moreover, a Lagrangian method for passive scalar transport intensified with

the LVIC was developed to track the vortex dynamics. The LVIC was then applied to simulations of

the interaction of a vortex ring and a vortex tube to clarify their reconnection characteristics. The

characteristics of the flow phenomena are highlighted as follows:    
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In the case of RerΓ = 10000 and RetΓ = 1000, the tube effects on the ring are trivial while the

ring breaks it into two parts and entrains them. The energy spectrum remains unchanged with time

evolution, the small-scale vortex structure is not generated, and the helicity does not appear on the

vortex structure.

In the case of RerΓ = 10000 and RetΓ = 5000, a part of the tube is detached, and this part rolls

around the ring to generate the vortex structures of small scales. The tube is reconnected after the

impingement. The population of small-scale vortex structures increases in the whole time evolution;

the smaller-scale vortices continue to be formed after the impingement. The detached part of the tube

and the ring are strongly twisted.

In the case of RerΓ = 10000 and RetΓ = 10000, the reconnection occurs on both the ring and

tube. When the ring collides with the tube, they break into two parts. A part of the ring connects

with a leaving part of the tube to form the secondary ring while the rest replaces the leaving part to

reconstruct the tube. Then, the flow becomes more stable. The population of the small-scale vortex

structures increases from the beginning until the collision. However, it significantly decreases after

the reconnection.

The total enstrophy in the case of RerΓ = 10000 and RetΓ = 1000 is trivial and remains unchanged

with time evolution because of a weak vortex interaction. The duration of the increase of the enstrophy

in the case of RerΓ = 10000 and RetΓ = 5000 is longer than those with RerΓ = 10000 and RetΓ = 10000.

This is explained as the fact that with RerΓ = 10000 and RetΓ = 10000, the flow becomes more stable

when the ring and tube are reconnected. The reconnection reduces the mixing performance. The total

kinetic energy significantly reduces in the case of RerΓ = 10000 and RetΓ = 5000, followed by the cases

with RetΓ = 10000 and RetΓ = 1000, respectively. The higher the mixing performance is, the more

significant the kinetic energy is transferred to thermal energy.

A Change rate of enstrophy

The flow enstrophy is formulated as

En(t) =
1

2LxLyLz

∫∫∫
Ω
ω2dxdydz (43)

The change rate of enstrophy is expressed as [24]

D(En(t))

Dt
=

1

LxLyLz

∫∫∫
Ω

D(0.5ω2)

Dt
dxdydz =

1

LxLyLz

∫∫∫
Ω

ωDω

Dt
dxdydz (44)

Substituting the following equation, Eq. 24,

Dω

Dt
=
∂ω

∂t
+ (u · ∇)ω = ν∇2ω + (ω · ∇)u +∇ · (Φij − Φji) (45)

into Eq. (44), an equation showing the effects on the change rate of enstrophy is written as

D(En(t))

Dt
=

1

LxLyLz

∫∫∫
Ω
ω ·
(
ν∇2ω

)
dxdydz︸ ︷︷ ︸

diffusion effects

+
1

LxLyLz

∫∫∫
Ω
ω ·
[(
ω · ∇

)
u
]
dxdydz︸ ︷︷ ︸

stretching effects

+

1

LxLyLz

∫∫∫
Ω
ω ·
[
∇ · (Φij − Φji)

]
dxdydz︸ ︷︷ ︸

sub-grid scale effects

(46)

The first, second, and third terms on the right of Eq. (46) expresses the effects of vortex diffusion,

stretching, and sub-grid scale term on the rate of change of enstrophy.
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