
Safety-enhanced UAV Path Planning with Spherical Vector-based Particle Swarm
Optimization

Manh Duong Phunga,b,∗, Quang Phuc Haa

aSchool of Electrical and Data Engineering, University of Technology Sydney (UTS)
15 Broadway, Ultimo NSW 2007, Australia

bVNU University of Engineering and Technology (VNU-UET), Vietnam National University, Hanoi (VNU)
144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Abstract

This paper presents a new algorithm named spherical vector-based particle swarm optimization (SPSO) to deal with
the problem of path planning for unmanned aerial vehicles (UAVs) in complicated environments subjected to multiple
threats. A cost function is first formulated to convert the path planning into an optimization problem that incorporates
requirements and constraints for the feasible and safe operation of the UAV. SPSO is then used to find the optimal
path that minimizes the cost function by efficiently searching the configuration space of the UAV via the correspondence
between the particle position and the speed, turn angle and climb/dive angle of the UAV. To evaluate the performance
of SPSO, eight benchmarking scenarios have been generated from real digital elevation model maps. The results show
that the proposed SPSO outperforms not only other particle swarm optimization (PSO) variants including the classic
PSO, phase angle-encoded PSO and quantum-behave PSO but also other state-of-the-art metaheuristic optimization
algorithms including the genetic algorithm (GA), artificial bee colony (ABC), and differential evolution (DE) in most
scenarios. In addition, experiments have been conducted to demonstrate the validity of the generated paths for real
UAV operations. Source code of the algorithm can be found at https://github.com/duongpm/SPSO.

Keywords: Path planning, Particle swarm optimization, UAV

1. Introduction

Path planning is essential for UAVs to carry out tasks
and avoid threats appearing in their operating environ-
ment. A planned path should be optimal in a specific cri-
terion defined by the application. For most applications
such as aerial photography, mapping, and surface inspec-
tion, the criterion is typically to minimize the traveling
distance among the visiting locations of UAVs so that less
time and fuel are required [1, 2]. The criterion can also be
maximizing the detection probability as in dynamic target
search [3], minimizing the flight time as with surveillance
and rescue [4], or finding the Pareto solution for multi-
objective navigation [5]. In addition, the planned path
also needs to satisfy the constraints relating to safety im-
posed by the operating environment and feasibility im-
posed by the UAV. Here, safety relates to the capability
of the path to guide the UAV through threats appearing
in the environment such as obstacles. Feasibility involves
the alignment of the path with UAV limits associated with
flight time, flight altitude, fuel consumption, turning rate
and climbing angle. Path planning with enhanced safety in

∗Corresponding author
Email addresses: manhduong.phung@uts.edu.au (Manh Duong

Phung), quang.ha@uts.edu.au (Quang Phuc Ha)

terms of collision-free and feasible motion for UAVs there-
fore remains a challenging problem.

In the literature, several approaches have been proposed
for UAV path planning such as graph search, cell decompo-
sition, potential field and nature-inspired algorithms. The
graph search approach splits the environment into con-
nected discrete regions, each forms a vertex of the graph
that the path is being searched. In [6, 7], the Voronoi
diagram has been used to generate a graph which then be-
came the input to the Eppstein’s k -best paths algorithm
[8] to find the best path. Another graph-based algorithm
is the probabilistic roadmap (PRM) that samples the con-
figuration space of the UAV to generate vertices of the
graph [9]. Similar to PRM, the rapid-exploring random
trees (RRT) algorithm uses the configuration space to cre-
ate a search graph. It however finds the path by recursively
adding the edge that has the smallest heuristic cost to it
[10]. Although the graph-based algorithms are effective
in generating feasible flight paths, they are not suitable
to include constraints related to UAV maneuver and thus
can result in large errors between the planned and flight
paths.

The cell decomposition approach, on the other hand,
represents the space as a grid of equal cells and employs
a heuristic search to find the flight path. A* is a popular
algorithm that searches the cell space using the least cost

1

https://github.com/duongpm/SPSO

from the current location to its neighbors and the target
location [11, 12]. This algorithm is extended in [13] to in-
clude UAV constraints such as the turning angle. It is then
modified to become bidirectional to deal with intermittent
measurements [12]. Cell decomposition is also used in [14]
for path coordination between UAVs and UGVs, in [15]
for flight surveillance and in [16] for path prediction in
real-time UAV operations. The main drawback of the cell
decomposition approach however is the limitation in the
scalable capacity as the number of cells exponentially in-
creases with the search space dimension.

The potential field is another approach that directly
searches the continuous space for solutions by treating
the UAV as a particle moving under the influence of an
artificial potential field constructed from components as-
sociated with the goal and any obstacles [17, 18]. This
approach has been augmented with an additional control
force to provide a shorter and smoother path [19, 20]. It
is also combined with the Hamiltonian function to enable
obstacle avoidance [21] or with the receding horizon op-
timization to obtain paths for multiple UAVs without vi-
olating the collision avoidance and network connectivity
constraints [22]. The potential field approach, however,
does not consider the optimality of the solution. It is also
known to have limitations in dealing with local minima
occurred in the field.

Recently, the nature-inspired approach has become more
prevalent in path planning due to its effectiveness in deal-
ing with UAV dynamic constraints and the capacity to
search for the global optimum in complex scenarios. A
variety of nature-inspired algorithms have been developed
for UAV path planning such as the cuckoo search [23], ge-
netic algorithm (GE) [24, 25], differential evolution (DE)
[26, 27], artificial bee colony (ABC) [28], ant colony op-
timization (ACO) [29], and particle swarm optimization
(PSO) [1, 25, 26, 30]. Among them, PSO is commonly
used with a number of variants introduced.

Inspired by the behavior of bird flocking and fish school-
ing, PSO is a population-based algorithm that possesses
two important properties of swarm intelligence, the cogni-
tive and social coherence [31]. Those properties allow each
particle of the swarm to search for the solution by following
its own experience and the swarm experience instead of us-
ing conventional evolutionary operators like mutation and
crossover. As a result, PSO is able to find the global so-
lution with a stable convergence in a shorter computation
time compared to other nature-inspired algorithms [32].
It is also known to be less sensitive to initial conditions
and variations of objective functions and is able to adapt
to various environment structures via a small number of
parameters including one acceleration coefficient and two
weight factors [33]. Due to its swarm nature, PSO can
be parallelized to run on multiple processors, graphical
processing units (GPU) or computer clusters to obtain
the computation time required for both offline and online
path planning [34]. Given those advantages, PSO has been
widely used for path planning for mobile robot navigation

with different approaches introduced such as evolutionary
operator-based PSO [35], adaptive bare-bones PSO [36] or
multi-objective PSO [37, 38]. In UAV path planning, sev-
eral variants have been proposed such as the classic PSO
[31, 25], phase angle-encoded PSO (θ-PSO) [39, 40, 30],
quantum-behaved PSO (QPSO) [41, 30] and discrete PSO
(DPSO) [1, 42]. Those variants have the same population-
based structure but differ in the way they represent the
search space and the solution encoded in particles. Con-
sequently, different solutions may have resulted under the
same conditions of the operating environment, dynamic
constraints, and objective function. Therefore, it is im-
portant to compare those variants in different scenarios to
provide a clear insight as to which of them is preferable
for UAV path planning. In addition, it is also necessary
to incorporate the maneuver properties of UAVs into the
algorithms to further improve their navigation capacity.

In this study, we address the path planning problem for
UAVs by first formulating an objective function that in-
corporates various requirements and constraints associated
with the UAV and its flight path. We then introduce a new
PSO algorithm that is capable of exploiting the configura-
tion space of the UAV to generate quality solutions. For
evaluation, eight scenarios have been generated with in-
creasing levels of complexity based on the use of real digital
elevation model (DEM) maps. The comparisons between
SPSO and other PSO and metaheuristic algorithms are
then conducted on those scenarios to evaluate their perfor-
mance. In addition, experiments have been carried out to
verify the feasibility of the solutions generated by SPSO for
UAV operation in practical scenarios. Our contributions in
this study therefore are fourfold: (i) development of a new
objective function that converts the path planning into an
optimization problem incorporating optimal criteria and
constraints associated with the path length, threat, turn
angle, climb/dive angle, and flight height for the safe and
efficient operation of UAVs; (ii) proposal of a new PSO al-
gorithm named spherical vector-based PSO (SPSO) that is
capable of searching the configuration space for the global
optimal solution; (iii) benchmarking the performance of
PSO variants including PSO, θ-PSO, QPSO and SPSO for
UAV path planning; (iv) validating the generated paths for
real UAV operations.

The rest of this paper is structured as follows. Sec-
tion 2 introduces the steps to formulate the objective func-
tion. Section 3 describes PSO and its variants. Section 4
presents SPSO and its implementation for solving the path
planning problem. Section 5 provides comparison and ex-
periment results. Finally, a conclusion is drawn to end our
paper.

2. Problem Formulation

In this study, the path planning problem is formulated
via a cost function that incorporates optimal criteria and
UAV constraints described as follows.

2

kR'

ijP

'

, 1i jP +

kd

Danger
zone

Collision
zone

D

S

kC

Figure 1: Determination of the threat cost.

2.1. Path optimality

For efficient operation of UAVs, a planned path needs to
be optimal in a certain criterion depending on the applica-
tion. With our focus on aerial photography, mapping, and
surface inspection, we choose to minimize the path length.
Since the UAV is controlled via a ground control station
(GCS), a flight path Xi is represented as a list of n way-
points that the UAV needs to fly through. Each waypoint
corresponds to a path node in the search map with co-
ordinates Pij = (xij , yij , zij). By denoting the Euclidean

distance between two nodes as
∥∥∥−−−−−−→PijPi,j+1

∥∥∥, the cost F1

associated to the path length can be computed as:

F1(Xi) =

n−1∑
j=1

∥∥∥−−−−−−→PijPi,j+1

∥∥∥ . (1)

2.2. Safety and feasibility constraints

Apart from optimality, the planned path needs to en-
sure the safe operation of the UAV by guiding it through
threats that are typically caused by obstacles appearing in
the operation space. Let K be the set of all threats, each is
assumed to be prescribed in a cylinder with its projection
having the center coordinate Ck and radius Rk as shown

in Fig.1. For a given path segment
∥∥∥−−−−−−→PijPi,j+1

∥∥∥, the as-

sociated threat cost is proportional to its distance, dk, to
Ck. By considering the diameter, D, of the UAV and the
danger distance, S, to the collision zone, the threat cost
F2 is computed across waypoints Pij for obstacle set K as
follows:

F2(Xi) =
n−1∑
j=1

K∑
k=1

Tk(
−−−−−−→
PijPi,j+1),

Tk(
−−−−−−→
PijPi,j+1) =


0, if dk > S +D +Rk

(S +D +Rk)− dk, if D +Rk < dk ≤ S +D +Rk

∞, if dk ≤ D +Rk.

(2)

Note that while diameter D is determined by the UAV
size, distance S depends on several factors such as the

hmax

hmin

Sea

level

Altitude

Height

Elevation

Figure 2: Altitude cost explanation.

application, operating environment and positioning accu-
racy. For instance, S can be chosen from tens of meters
in static environments with good GPS signal to hundreds
of meters for environments with moving objects and weak
GPS signal for positioning.

During operation, the flying altitude is often constrained
between the two given extrema, the minimum and max-
imum heights. For example with surveying and search
applications, it is required the visual data to be collected
by the camera at a specific resolution and field of view and
thus constrain the flying altitude. Let the minimum and
maximum heights to be hmin and hmax respectively. The
altitude cost associated to a waypoint Pij is computed as:

Hij =

|hij −
(hmax + hmin)

2
|, if hmin ≤ hij ≤ hmax

∞, otherwise,

(3)

where hij denotes the flight height with respect to the
ground as illustrated in Fig.2. It can be seen that Hij

maintains the average height and penalises the out-of-
range values. Summing Hij for all waypoints gives the
altitude cost:

F3(Xi) =

n∑
j=1

Hij . (4)

The smooth cost evaluates the turning and climbing
rates which are essential to generate feasible paths. As
shown in Fig.3, the turning angle, φij , is the angle between

two consecutive path segments,
−−−−−−→
P ′ijP

′
i,j+1 and

−−−−−−−−→
P ′i,j+1P

′
i,j+2,

projected on the horizontal plane Oxy. Let
−→
k be the unit

vector in the direction of the z axis, the projected vector
can be calculated as:

−−−−−−→
P ′ijP

′
i,j+1 =

−→
k × (

−−−−−−→
PijPi,j+1 ×

−→
k), (5)

Hence, the turning angle is computed as:

φij = arctan


∥∥∥−−−−−−→P ′ijP

′
i,j+1 ×

−−−−−−−−→
P ′i,j+1P

′
i,j+2

∥∥∥
−−−−−−→
P ′ijP

′
i,j+1.

−−−−−−−−→
P ′i,j+1P

′
i,j+2

 . (6)

3

x

y

z

O

ijP

, 2i jP +

'

ijP

'

, 1i jP +

'

, 2i jP +

"

, 2i jP +

ij

, 1i j +

, 1i jP +

i
j

k

Figure 3: Turning and climbing angle calculation.

The climbing angle, ψij , is the angle between the path

segment
−−−−−−→
PijPi,j+1 and its projection

−−−−−−→
P ′ijP

′
i,j+1 onto the

horizontal plane. It is given by:

ψij = arctan

 zi,j+1 − zij∥∥∥−−−−−−→P ′ijP
′
i,j+1

∥∥∥
 . (7)

The smooth cost is then computed as:

F4(Xi) = a1

n−2∑
j=1

φij + a2

n−1∑
j=1

| ψij − ψi,j−1 |, (8)

where a1 and a2 are respectively the penalty coefficients
of the turning and climbing angles.

2.3. Overall cost function

By considering the optimality, safety and feasibility con-
straints associated with a pathXi, the overall cost function
can be defined of the form:

F (Xi) =

4∑
k=1

bkFk(Xi), (9)

where bk is the weight coefficient, and F1(Xi) to F4(Xi)
are respectively the costs associated to the path length
(1), threat (2), smoothness (4), and flight height (8). The
decision variable is Xi including the list of n waypoints
Pij = (xij , yij , zij) such that Pij ∈ O, where O is the
operating space of UAVs. Given those definitions, the cost
function F is fully determined and can be used as the input
for the path planning process.

3. Related PSO algorithms for UAV path planning

With the cost function F defined in (9), the path plan-
ning becomes an optimization problem in which the aim is

to find the path X∗ that minimizes F . As F in general is
a complicated multimodal function, solving it using clas-
sic methods such as hill climbing is not feasible due to lo-
cal maxima. Instead, heuristic and metaheuristic methods
are often used to provide quality solutions in a reasonable
amount of time. This section describes the classic PSO and
its variants including θ-PSO and QPSO which are among
the most popular metaheuristic algorithms used for UAV
path planning.

3.1. Particle swarm optimization

PSO is a stochastic optimization method working in
light of swarm intelligence. Each particle i in the swarm
is characterized by its position, Xi = (xi1, xi2, ..., xiN),
and velocity, Vi = (vi1, vi2, ..., viN), in the search space
of N dimensions. It searches for the optimal solution
by compromising between its own experience reflected via
the local best position, Li = (li1, li2, ..., liN), and the
swarm experience reflected via the global best position,
Lg = (Lg1, Lg2, ..., LgN). For a swarm of M particles, the
compromise is carried out by the following equations:

vk+1
ij ← wkvkij + η1r1j(l

k
ij − xkij) + η2r2j(l

k
gj − xkij) (10)

xk+1
ij ← xkij + vk+1

ij , (i = 1, 2, ...,M ; j = 1, 2, ..., N), (11)

where k represents the kth generation, xij ∈ [xmin, xmax]
and vij ∈ [vmin, vmax] are respectively the jth dimension
of the ith particle’s position and velocity, wk is the inertial
weight, η1 and η2 are respectively the cognitive and social
coefficients, and r1j and r2j are two random samples within
[0, 1] drawn from a uniform probability distribution. The
values of η1 and η2 determine the moving tendency of par-
ticles toward the local best and global best position. The
weight wk, on the other hand, represents the compromise
between the exploration (global search) and exploitation
(local search). It is often chosen to be smaller over gen-
erations to increase the exploitation when the swarm is
getting closer to the optimal solution.

When using PSO for UAV path planning, the posi-
tion of each particle encodes a candidate path. Hence,
the swarm is equivalent to a matrix of M paths, X =
[X1, X2, ..., XM]T , each includes a list of N waypoints of
the form:

Xi = (xi1, yi1, zi1, xi2, yi2, zi2, ..., xi,N , yi,N , zi,N). (12)

As the start and end points of all paths are fixed, they
are not included in the particle position. A path of n
waypoints is thus represented by a particle of dimension
3N , N = n − 2. During the optimization process, the
particles evolve according to (15) and (16) based on the
evaluation in (9) to converge to the best path.

3.2. Phase angle-encoded particle swarm optimization

θ-PSO uses angles instead of Cartesian coordinates to
represent particle positions [39, 40, 30]. In θ-PSO, a path

4

of n waypoints is described by a vector of 3N angles:

Θi = (θi1, ..., θiN , θi,N+1, ..., θi,2N , θi,2N+1, ..., θi,3N),
(13)

where N = n−2 and θij is within the interval [−π/2, π/2].
The velocity associated to each particle is then expressed
by angle increments as:

∆Θi = (∆θi1, ...,∆θiN ,∆θi,N+1, ...,∆θi,2N ,∆θi,2N+1, ...,∆θi,3N).
(14)

Hence, the update equations for θ-PSO are given by:

∆θk+1
ij ← wk∆θkij +η1r1j(γ

k
ij−θkij)+η2r2j(γ

k
gj−θkij) (15)

θk+1
ij ← θkij + ∆θk+1

ij , (i = 1, 2, ...,M ; j = 1, 2, ..., 3N),
(16)

where Γi = [γi1, γi2, ..., γi,3N] and Γg = [γg1, γg2, ..., γg,3N]
are respectively the phase angles of the local and global
best positions of particle i.

To evaluate the fitness, a monotonic function is used to
map particles from the angular space to the coordinate
space. Let the monotonic function be f : [−π/2, π/2] →
[xmin, xmax], there is one and only one position Xi mapped
by f corresponding to any given position Θi. That position
is given by [39]: xij = f(θij),

f(θij) =
1

2
[(xmax − xmin)sin(θij) + xmax + xmin].

(17)

It can be seen from (17) that θ-PSO introduces nonlin-
earity to the candidate paths by adding more waypoints to
their middle section and thus aims to improve the search
capacity in that area of the operating environment.

3.3. Quantum-behaved particle swarm optimization

QPSO assumes particles have a quantum state described
by a wavefunction ψ(x, t) and is attracted by a Delta po-
tential well [41]. The probability that a particle appears
at position x is then described via its probability density
function |ψ(x, t)|2, which can be derived from the time-
dependent Schrödinger equation. By using the Monte
Carlo simulation method, that position is updated by the
following equation:

xk+1
ij = pkij ± 0.5Lk

ij ln(1/r), (18)

where r ∈ (0, 1) is a random number drawn from a uni-
form probability distribution and pkij is a local attractor
computed as:

pkij = alkij + (1− a)lkgj , (19)

where a ∈ (0, 1) is a random number of uniform distribu-
tion. Lk

ij is the parameter computed by:

Lk
ij = 2β|mbestkj − xkij |, (20)

mbestkj =

M∑
i=1

lkij/M, (21)

where mbest is the mean best position of the swarm and β
is the contraction-expansion coefficient. Noting that par-
ticles in QPSO do not maintain the velocity component
but only the position.

In path planning, QPSO represents a flight path as a
set of N waypoints similar to PSO. Those waypoints are
encoded through the position of particles which is then
updated by 18.

4. Spherical vector-based PSO for UAV path plan-
ning

Exploiting maneuver characteristics of UAVs, we pro-
pose in this study the SPSO algorithm and provide its
implementation to solve the path planning problem.

4.1. Spherical vector-based PSO algorithm

SPSO encodes each path as a set of vectors, each de-
scribes the movement of the UAV from one waypoint to
another. Those vectors are represented in the spheri-
cal coordinate system with three components including
the magnitude ρ ∈ (0, path length), elevation angle ψ ∈
(−π/2, π/2), and azimuth angle φ ∈ (−π, π). A flight path
Ωi with N nodes is then represented by a hyper spherical
vector of 3N dimensions:

Ωi = (ρi1, ψi1, φi1, ρi2, ψi2, φi2, ..., ρiN , ψiN , φiN), N = n−2.
(22)

By describing the position of a particle as Ωi, the velocity
associated to that particle is described by an incremental
vector:

∆Ωi = (∆ρi1,∆ψi1,∆φi1,∆ρi2,∆ψi2,∆φi2, ...,∆ρiN ,∆ψiN ,∆φiN).
(23)

Denoting spherical vector (ρij , ψij , φij) as uij and veloc-
ity (∆ρij ,∆ψij ,∆φij) as ∆uij , the update equations for
SPSO are given by:

∆uk+1
ij ← wk∆ukij+η1r1j(q

k
ij−ukij)+η2r2j(q

k
gj−ukij) (24)

uk+1
ij ← ukij+∆uk+1

ij , (i = 1, 2, ...,M ; j = 1, 2, ..., N), (25)

where Qi = (qi1, qi2, ..., qi,N) and Qg = (qg1, qg2, ..., qg,N)
are respectively the sets of vectors representing the local
and global best positions of particle i.

In order to determine Qi and Qg, it is required to map a
vector-based flight path Ωi to a direct path Xi so that the
associated cost can be evaluated. The mapping of vector
uij = (ρij , ψij , φij) ∈ Ωi to waypoint Pij = (xij , yij , zij) ∈
Xi can be conducted as:

xij = xi,j−1 + ρijsinψijcosφij , (26)

yij = yi,j−1 + ρijsinψijsinφij , (27)

zij = zi,j−1 + ρijcosψij . (28)

Denoting the map as ξ : Ω→ X, the local and global best
positions can be computed as:

Qi =

{
Ωi if F (ξ(Ωi)) < F (ξ(Qi−1))
Qi−1 otherwise

, (29)

5

Qg = argmin
Qi

F (ξ(Qi)). (30)

The rationale for the use of spherical vectors in SPSO
is to achieve safety enhancement of navigation via the in-
terrelationship between the magnitude, elevation and az-
imuth components of the vectors with the speed, turning
angle and climbing angle of the UAV. As a result, the
particles of SPSO search for solutions in the configura-
tion space instead of the Cartesian space to reach a higher
probability of finding quality solutions. More importantly,
constraints relating to the turning and climbing angles can
be directly implemented via the elevation and azimuth an-
gles of the spherical vector so that the search space can be
significantly reduced. In some scenarios, for example when
the UAV flies at a constant speed, the magnitude can be
fixed to further reduce the search space for extending the
search capacity.

/* Initialization: */

Get search map and initial path planning
information ;

Set swarm parameters w, η1, η2, swarm size;
foreach particle i in swarm do

Create a random path Ω0
i ;

Assign Ω0
i to particle’s position;

Compute fitness F (ξ(Ωi)) of the particle;
Set local best Qi of the particle to its fitness;

end
Set global best Qg to the best fit particle;
/* Evolutions: */

for k ← 1 to max generation do
foreach particle i in swarm do

Compute velocity ∆Ωk
i ; /* Eq.24 */

Compute new position Ωk
i ; /* Eq.25 */

Map Ωk
i to Xk

i in Cartesian space; /* Eq.26

- 28 */

Update fitness F (Xk
i); /* Eq.9 */

Update local best Qi; /* Eq.29 */

end
Update global best Qg; /* Eq.30 */

Save best position Ω∗ associated with Qg ;
/* the best path */

end

Algorithm 1: Pseudo code of SPSO for UAV path
planning.

4.2. Implementation of SPSO for UAV path planning

The pseudo code of SPSO is shown in Fig.1. It shares
the same structure as other PSO variants including pa-
rameter initialization, particle generation and swarm evo-
lution, but differs from others in the representation of par-
ticles’ position, velocity and update equations. Therefore,
parallelism can be used as adopted in [1] to speed up the
calculation process. During algorithm execution, infeasible

solutions appeared will be assigned an infinite cost value
so that they will excluded from the final output solutions.

5. Results

To evaluate the performance of SPSO, we have con-
ducted a number of comparisons and experiments with
details as follows.

5.1. Scenario setup

The scenarios used for evaluation are based on real dig-
ital elevation model (DEM) maps derived from LiDAR
sensors [43]. Two areas of Christmas Island in Australia
with different terrain structures are selected and then aug-
mented to generate eight benchmarking scenarios as shown
in Fig.4 and Fig. 5. In those scenarios, the number and lo-
cation of threats, represented as red cylinders, are chosen
at different levels of complexity.

For comparisons, all PSO variants are implemented with
the same set of parameters: w = 1 with the damping
rate of 0.98, η1 = 1.5 and η2 = 1.5. The swarm size is
chosen to be 500 particles and the number of iterations is
200. The number of waypoints are respectively selected
as n = 12 and n = 22 corresponding to 10 and 20 line
segments. In each comparison, all algorithms are run 10
times to find the average and standard deviation values.
In addition, a statistical metric named paired sample t-test
[44] is used to evaluate the significance of mean differences
between SPSO and other PSO algorithms. The notation
D+ implies that the mean value of SPSO is statistically
better than the compared PSO, D− implies the opposite,
whereas N means that the difference is insignificant and
NA stands for “Not Applicable”. The level of confidence
in t-test evaluations is set to α = 0.05 equivalent to 95%.

5.2. Comparison between PSO algorithms

The top view of the resultant paths for n = 12 generated
by PSO algorithms are shown in Fig.4 and Fig.5. It can be
seen that all algorithms are able to generate feasible paths
that fulfill the requirements on the path length, threat,
turn angle, climb/dive angle and height. Their optimality,
however, varies with scenarios. For simple scenarios 1, 2, 5,
and 6, all algorithms converge well with slight differences
in their fitness values. The t-test values in Table 1 also
show that some differences in scenarios 1 and 5 are statisti-
cally insignificant. For more complicated scenarios 3, 4, 7,
and 8, their performance however is much different. SPSO
is able to obtain near-optimal solutions, whereas PSO and
θ-PSO only converge to relatively good solutions. QPSO
is not able to find quality solutions. This result can be
further confirmed by Table 1 which presents the average,
standard deviation, and paired sample t-test of the fitness
values. It shows that SPSO statistically achieves the best
fitness with D+ t-test in most scenarios while QPSO is
only good in simple scenarios. PSO and θ-PSO introduce

6

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 4: Top view of the paths generated by the PSO variants for scenarios 1 to 4

Table 1: Fitness values of the paths generated by the PSO variants with 10 line segments (n = 12)

Scenario SPSO PSO θ-PSO QPSO
- Mean Std t-test Mean Std t-test Mean Std t-test Mean Std t-test
1 4683 104 NA 4683 98 N 4643 50 N 4826 162 D+
2 4699 94 NA 5059 41 D+ 5006 69 D+ 5958 220 D+
3 5486 38 NA 5761 20 D+ 5766 32 D+ 7470 462 D+
4 4994 28 NA 5781 56 D+ 5794 46 D+ 7120 761 D+
5 5441 27 NA 5476 37 N 5518 37 D+ 5508 33 D+
6 5362 59 NA 5514 67 D+ 5486 45 D+ 5474 21 D+
7 5778 94 NA 5838 39 D+ 5800 43 N 5965 193 D+
8 6006 63 NA 6396 29 D+ 6368 46 D+ 8093 259 D+

7

(a) Scenario 5 (b) Scenario 6

(c) Scenario 7 (d) Scenario 8

Figure 5: Top view of the paths generated by the PSO variants for scenarios 5 to 8

8

relatively good results in all scenarios with stable conver-
gence reflected via small deviations.

Figure 6 provides a closer look at the behavior of the
variants by showing their best fitness over iterations. It
is recognizable that all variants converge in a similar fash-
ion except QPSO. It is due to the fact that QPSO does
not originate from the interaction of biological swarms but
the transition in quantum states of particles. On another
note, SPSO presents the best performance as it has a direct
mapping between the properties of particles and UAV pa-
rameters to gain advantages in exploring the search space.
Figure 7 shows the 3D and side views of the paths obtained
by SPSO for scenarios 4 and 8, the two most challenging
scenarios. It can be seen that the paths are smooth and
valid with the flight height maintained properly with re-
spect to the terrain.

To compare the scalability of PSO variants, we increased
the number of waypoints to n = 22 in another comparison.
The result presented in Table 2 shows that QPSO does
not perform well in most scenarios, especially scenarios 3,
4 and 8 when its particles could not evolve to find better
solutions. PSO and θ-PSO perform properly for simple
scenarios but for complicated scenarios like 4, 5, and 8,
the quality of solutions is degraded due to their limitation
in exploring large search space. SPSO, on the other hand,
performs well in most scenarios thanks to the spherical
vector-based encoding mechanism that allows its particles
to search in the configuration space.

5.3. Comparison with other metaheuristic algorithms

To further evaluate the performance of SPSO, we
have compared its performance with other state-of-the-art
metaheuristic algorithms including the genetic algorithm
(GA), artificial bee colony (ABC), and differential evolu-
tion (DE). GA is implemented as in [25] with three mu-
tation operations: add a node, delete a node and merge
two nodes. ABC is implemented in its standard form [45].
DE is also implemented in its standard form [46], but with
some changes in the swarm size and iterations due to its
characteristic which performs better over a large number
of iterations [47]. Specifically, DE is implemented with
the swarm size of 100 and the iteration number of 1000 to
ensure the algorithm convergence at the same number of
fitness evaluations as with other algorithms.

Table 3 shows the fitness results. It can be seen that
SPSO outperforms other algorithms with increasing mar-
gins and D+ t-test for complicated scenarios 3, 4, 7 and
8. However, DE performs well for complicated scenarios
and has a stable convergence with small deviations due to
its exploration capacity over a large number of iterations.
ABC performs relatively well while GA shows the least
stable performance. The reason for the unstable perfor-
mance of GA lies in its operator ‘delete a node’. This op-
erator removes waypoints from a path to reduce the search
dimensions so that the probability of finding quality solu-
tions is increased. That operator, however, also reduces

the resolution of candidate paths causing them insufficient
to adapt to complex threats as with scenarios 3, 4, and 8.

Figures 8 and 9 provide the top view of the paths gen-
erated. It can be seen that all algorithms are able to gen-
erate collision free paths. However, SPSO introduces the
smoothest and shortest paths in most scenarios. DE does
not introduce the best paths for simple scenarios but pro-
vides near-optimal solutions for the complicated ones. It
reflects the nature of DE that carries out exploration via
mutation and selection to generate quality solutions but is
limited in exploitation to find the optimal solutions. Sim-
ilarly, ABC tends to generate average paths due to the
compromise among different types of bees. Finally, GA
generates paths that consist of only several line segments
and sharp turns as the result of node deletion.

Figure 10 shows the best fitness over iterations where
the values obtained by DE is scaled to 200 iterations for
the sake of comparison. It can be seen that GA converges
quickly to premature solutions due to search dimension
reduction. ABC presents slow convergence because of its
weakness in exploration. DE has steady convergence which
shows the efficiency of its differential operator. Finally,
SPSO has sufficiently fast convergence due to the balance
between exploitation and exploration implemented via the
social and coherence coefficients.

5.4. Experimental verification

We have conducted several experiments to evaluate the
validity of the generated paths for real UAV operations.
The UAV used is a 3DR Solo drone that can be pro-
grammed to fly automatically via ground control station
software named Mission Planner as shown in Fig. 11a.
The field used is a park in Sydney which has a monorail
bridge that the drone needs to flight through as shown
in Fig. 11b. The field is augmented with threats to
create two experimental scenarios. Scenario 1 has a flat
surface with 5 threats, whereas scenario 2 has 4 threats
and includes the monorail bridge with sharp changes in
height as shown in Fig. 12a and Fig. 12b. The longitude
and latitude of the start and goal locations for scenario
1 is (-33.87643,151.191778) and (-33.875711,151.192643),
and scenario 2 is (-33.875849, 151.191528) and (-
33.87513,151.192394) respectively. Those locations, to-
gether with the terrain map and flight constraints are used
as inputs of SPSO to generate waypoints. The waypoints
are then uploaded to the drone via Mission Planner for
autonomous flight.

Figure 12a shows the planned and flight paths obtained
in real time from Mission Planner for scenario 1. It can be
seen that the flight path is collision free and overlaps well
with the planned path. The flight height, which is basically
constant, also matches the planned path as shown in Fig.
12c. Similar results have been obtained for scenario 2 as
shown in Fig. 12b and Fig. 12d. Notably, the drone can
track the planned path to carry out abrupt changes in
height to fly over the monorail bridge. Besides, the good
match between the planned and flight paths indicates not

9

0 50 100 150 200

Number of Iterations

4000

5000

6000

7000

8000

9000

10000

F
itn

es
s

V
al

ue

SPSO
PSO
QPSO
-PSO

0 50 100 150 200

Number of Iterations

4000

5000

6000

7000

8000

9000

10000

F
itn

es
s

V
al

ue

(a) Scenario 1

0 50 100 150 200

Number of Iterations

4000

5000

6000

7000

8000

9000

10000

F
itn

es
s

V
al

ue

SPSO
PSO
QPSO
-PSO

0 50 100 150 200

Number of Iterations

4000

5000

6000

7000

8000

9000

10000

F
itn

es
s

V
al

ue

(b) Scenario 2

0 50 100 150 200

Number of Iterations

4000

6000

8000

10000

12000

F
itn

es
s

V
al

ue

SPSO
PSO
QPSO
-PSO

0 50 100 150 200

Number of Iterations

4000

6000

8000

10000

12000

F
itn

es
s

V
al

ue

(c) Scenario 3

0 50 100 150 200

Number of Iterations

4000

6000

8000

10000

12000

14000

F
itn

es
s

V
al

ue

SPSO
PSO
QPSO
-PSO

0 50 100 150 200

Number of Iterations

4000

6000

8000

10000

12000

14000

F
itn

es
s

V
al

ue

(d) Scenario 4

0 50 100 150 200

Number of Iterations

5000

6000

7000

8000

9000

10000

11000

F
itn

es
s

V
al

ue

SPSO
PSO
QPSO
-PSO

0 50 100 150 200

Number of Iterations

5000

6000

7000

8000

9000

10000

11000

F
itn

es
s

V
al

ue

(e) Scenario 5

0 50 100 150 200

Number of Iterations

5000

6000

7000

8000

9000

10000

F
itn

es
s

V
al

ue

SPSO
PSO
QPSO
-PSO

0 50 100 150 200

Number of Iterations

5000

6000

7000

8000

9000

10000

F
itn

es
s

V
al

ue

(f) Scenario 6

0 50 100 150 200

Number of Iterations

5000

6000

7000

8000

9000

10000

11000

F
itn

es
s

V
al

ue

SPSO
PSO
QPSO
-PSO

0 50 100 150 200

Number of Iterations

5000

6000

7000

8000

9000

10000

11000

F
itn

es
s

V
al

ue

(g) Scenario 7

0 50 100 150 200

Number of Iterations

6000

8000

10000

12000

14000

F
itn

es
s

V
al

ue

SPSO
PSO
QPSO
-PSO

0 50 100 150 200

Number of Iterations

6000

8000

10000

12000

14000

F
itn

es
s

V
al

ue

(h) Scenario 8

Figure 6: Best fitness values over iterations of the PSO algorithms

10

(a) Scenario 4: 3D view

(b) Scenario 8: 3D view

(c) Scenario 4: Side view (d) Scenario 8: Side view

Figure 7: The planned paths generated by SPSO for scenarios 4 and 8

Table 2: Fitness values of the paths generated by the PSO variants with 20 line segments (n = 22)

Scenario SPSO PSO θ-PSO QPSO
- Mean Std t-test Mean Std t-test Mean Std t-test Mean Std t-test
1 4757 91 NA 4821 54 N 4827 63 N 5246 236 D+
2 4906 141 NA 4900 162 N 4903 136 N 5379 201 D+
3 6202 172 NA 6521 291 D+ 6260 355 N 16926 0 D+
4 5373 179 NA 6146 335 D+ 6201 451 D+ 15406 354 D+
5 5806 222 NA 6188 133 D+ 6330 237 D+ 6572 320 D+
6 5718 130 NA 5844 275 D+ 5733 173 N 6049 68 D+
7 5951 132 NA 5992 197 N 6338 363 D+ 7143 372 D+
8 6152 111 NA 7016 281 D+ 7134 782 D+ 13828 0 D+

Table 3: Fitness values of the paths generated by the SPSO and other metaheuristic algorithms with 10 line segments (n = 12)

Scenario SPSO GA DE ABC
- Mean Std t-test Mean Std t-test Mean Std t-test Mean Std t-test
1 4683 104 NA 4782 145 N 5014 6 D+ 4822 49 D+
2 4699 94 NA 5357 113 D+ 5040 14 D+ 5020 56 D+
3 5486 38 NA 6761 94 D+ 5716 2 D+ 5882 266 D+
4 4994 28 NA 6325 224 D+ 5741 4 D+ 5325 118 D+
5 5441 27 NA 5676 117 D+ 5482 9 D+ 5608 34 D+
6 5362 59 NA 5424 81 D+ 5665 36 D+ 5676 41 D+
7 5778 94 NA 5919 75 D+ 5633 17 D− 5976 75 D+
8 6006 63 NA 7274 554 D+ 6290 72 D+ 6719 90 D+

11

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 8: Top view of the paths generated by SPSO and other metaheuristic algorithms for scenarios 1 to 4

12

(a) Scenario 5 (b) Scenario 6

(c) Scenario 7 (d) Scenario 8

Figure 9: Top view of the paths generated by SPSO and other metaheuristic algorithms for scenarios 5 to 8

13

0 50 100 150 200

Number of Iterations

4000

5000

6000

7000

8000

9000

10000

F
itn

es
s

V
al

ue

SPSO
GA
DE
ABC

0 50 100 150 200

Number of Iterations

4000

5000

6000

7000

8000

9000

10000

F
itn

es
s

V
al

ue

(a) Scenario 1

0 50 100 150 200

Number of Iterations

4000

5000

6000

7000

8000

9000

10000

F
itn

es
s

V
al

ue

SPSO
GA
DE
ABC

0 50 100 150 200

Number of Iterations

4000

5000

6000

7000

8000

9000

10000

F
itn

es
s

V
al

ue

(b) Scenario 2

0 50 100 150 200

Number of Iterations

4000

6000

8000

10000

12000

F
itn

es
s

V
al

ue

SPSO
GA
DE
ABC

0 50 100 150 200

Number of Iterations

4000

6000

8000

10000

12000

F
itn

es
s

V
al

ue

(c) Scenario 3

0 50 100 150 200

Number of Iterations

4000

6000

8000

10000

12000

14000

F
itn

es
s

V
al

ue

SPSO
GA
DE
ABC

0 50 100 150 200

Number of Iterations

4000

6000

8000

10000

12000

14000

F
itn

es
s

V
al

ue

(d) Scenario 4

0 50 100 150 200

Number of Iterations

5000

6000

7000

8000

9000

10000

11000

F
itn

es
s

V
al

ue

SPSO
GA
DE
ABC

0 50 100 150 200

Number of Iterations

5000

6000

7000

8000

9000

10000

11000

F
itn

es
s

V
al

ue

(e) Scenario 5

0 50 100 150 200

Number of Iterations

5000

6000

7000

8000

9000

10000

F
itn

es
s

V
al

ue

SPSO
GA
DE
ABC

0 50 100 150 200

Number of Iterations

5000

6000

7000

8000

9000

10000

F
itn

es
s

V
al

ue

(f) Scenario 6

0 50 100 150 200

Number of Iterations

5000

6000

7000

8000

9000

10000

11000

F
itn

es
s

V
al

ue

SPSO
GA
DE
ABC

0 50 100 150 200

Number of Iterations

5000

6000

7000

8000

9000

10000

11000

F
itn

es
s

V
al

ue

(g) Scenario 7

0 50 100 150 200

Number of Iterations

6000

8000

10000

12000

14000

F
itn

es
s

V
al

ue

SPSO
GA
DE
ABC

0 50 100 150 200

Number of Iterations

6000

8000

10000

12000

14000

F
itn

es
s

V
al

ue

(h) Scenario 8

Figure 10: Best fitness values over iterations of SPSO and other metaheuristic algorithms

14

Remote
controller

GPS module (inside)

Mission
planner

(a) 3DR Solo drone and Mission Planner software

DroneMonorail
Bridge

(b) Experimental field with a monorail bridge

Figure 11: The drone and field used in experiments

path

Flight
path

Threat

Waypoint

PPllaannned
path

Flight
path

Threat

Waypoint

(a) The planned (yellow) and actual flight (magenta) paths in
experimental scenario 1

Planned
path

Flight
path

Threat

Waypoint

Monorail
bridge

(b) The planned (yellow) and actual flight (magenta) paths in
experimental scenario 2

0 20 40 60 80 100

x (m)

0

2

4

6

8

10

12

z
(m

)

Planned path

Flight path

0 20 40 60 80 100

x (m)

0

2

4

6

8

10

12

z
(m

)

(c) Altitude of the planned and actual flight paths in experimental
scenario 1

0 20 40 60 80 100

y (m)

0

5

10

15

20

25

30

35

z
(m

)

Planned path

Flight path

0 20 40 60 80 100

y (m)

0

5

10

15

20

25

30

35

z
(m

)

(d) Altitude of the planned and actual flight paths in experimental
scenario 2

Figure 12: Experimental flight results

15

only the validity of the path planning algorithm but also
the accuracy of the positioning system implemented in the
drone.

5.5. Discussion

Through comparisons and experiments, it is clear that
SPSO is capable of generating feasible, safe and optimal
paths for UAV operation. The proposed algorithm per-
forms especially well in complicated scenarios where many
obstacles and threats appear reflected via its small fitness
values and D+ t-test evaluations. The main drive for that
effective performance rests with the idea of switching the
search space, from the Cartesian to configuration space,
where quality solutions can be obtained. Besides, con-
straints on UAV dynamics such as turning and climbing
angles can be directly integrated into SPSO’s variables to
narrow down the search space. Nevertheless, hard con-
straints are being used in this study which may not be
optimal for operations in which UAV states such as speed
and altitude rapidly change over time.

In our design, the cost function is scalable in the sense
that additional requirements like fuel consumption can be
added as a term Fk with weight bk to the overall cost func-
tion (9). However, choosing the right values of bk to reflect
the relationship among requirements may become compli-
cated as the number of requirements increases. In those
situations, multi-objective optimization can be considered
to fulfill the task.

On another note, SPSO introduces relatively fast con-
vergence as can be seen in Fig.6 and Fig.10 due to coherent
interactions among particles. However, like many other
PSO variants, it faces the problem of premature conver-
gence where its particles converge to a local optimum in
certain scenarios. This is the case with scenario 7 where
DE performs better than SPSO due to its exploitation ca-
pability obtained via mutation and recombination. It sug-
gests that a relevant randomization mechanism such as
mutation, random walk or Lévy flight [48] may be useful
to deal with the premature convergence problem.

6. Conclusion

We have presented a new algorithm, SPSO, for the prob-
lem of UAV path planning with the focus on the safety
and feasibility of the paths generated. The cost function
is designed so that the constraints associated with opti-
mality, safety and feasibility are simultaneously incorpo-
rated. SPSO is developed based on the correspondence
between intrinsic motion components of the UAV and the
search space. Comparisons on eight benchmarking scenar-
ios generated from DEM maps show that SPSO achieves
the best quality paths in most scenarios. PSO and θ-PSO
have stable convergence whereas QPSO only performs well
for simple scenarios. Comparisons with other metaheuris-
tic algorithms including GA, ABC, and DE also confirm
the superior performance of SPSO. Experiments with real

UAVs show the validity of the generated paths for practi-
cal operations. Besides, the correspondence between the
particles of SPSO and UAV motion allows the kinematic
constraints of UAV to be incorporated when necessary to
further improve the path planning performance.

Our future work will focus on incorporating the exact
constraints to be used for SPSO in the configuration space
based on UAVs’ dynamic model. We will also explore
the applicability of SPSO to other optimization problems
by evaluating its performance on different benchmarking
functions.

References

[1] M. D. Phung, C. H. Quach, T. H. Dinh, Q. Ha, Enhanced dis-
crete particle swarm optimization path planning for UAV vision-
based surface inspection, Automation in Construction 81 (2017)
25 – 33. doi:10.1016/j.autcon.2017.04.013.

[2] V. T. Hoang, M. D. Phung, T. H. Dinh, Q. P. Ha, System ar-
chitecture for real-time surface inspection using multiple UAVs,
IEEE Systems Journal 14 (2) (2020) 2925–2936.

[3] M. D. Phung, Q. P. Ha, Motion-encoded particle swarm op-
timization for moving target search using UAVs, Applied Soft
Computing (2020) 106705doi:10.1016/j.asoc.2020.106705.

[4] L. Lin, M. A. Goodrich, UAV intelligent path planning for
wilderness search and rescue, in: 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2009, pp. 709–
714.

[5] C. Yin, Z. Xiao, X. Cao, X. Xi, P. Yang, D. Wu, Offline and
online search: UAV multiobjective path planning under dy-
namic urban environment, IEEE Internet of Things Journal
5 (2) (2018) 546–558.

[6] R. W. Beard, T. W. McLain, M. A. Goodrich, E. P. Anderson,
Coordinated target assignment and intercept for unmanned air
vehicles, IEEE Transactions on Robotics and Automation 18 (6)
(2002) 911–922.

[7] T. W. McLain, R. W. Beard, Coordination variables, coor-
dination functions, and cooperative timing missions, Journal
of Guidance, Control, and Dynamics 28 (1) (2005) 150–161.
doi:10.2514/1.5791.

[8] D. Eppstein, Finding the k shortest paths, SIAM Jour-
nal on Computing 28 (2) (1998) 652–673. doi:10.1137/

S0097539795290477.
[9] P. O. Pettersson, P. Doherty, Probabilistic roadmap based path

planning for an autonomous unmanned helicopter, Journal of
Intelligent & Fuzzy Systems 17 (4) (2006) 395–405.

[10] Y. Lin, S. Saripalli, Sampling-based path planning for UAV col-
lision avoidance, IEEE Transactions on Intelligent Transporta-
tion Systems 18 (11) (2017) 3179–3192.

[11] P. E. Hart, N. J. Nilsson, B. Raphael, A formal basis for the
heuristic determination of minimum cost paths, IEEE Transac-
tions on Systems Science and Cybernetics 4 (2) (1968) 100–107.

[12] B. Penin, P. R. Giordano, F. Chaumette, Minimum-time trajec-
tory planning under intermittent measurements, IEEE Robotics
and Automation Letters 4 (1) (2019) 153–160.

[13] R. J. Szczerba, P. Galkowski, I. S. Glicktein, N. Ternullo, Ro-
bust algorithm for real-time route planning, IEEE Transactions
on Aerospace and Electronic Systems 36 (3) (2000) 869–878.

[14] J. Li, G. Deng, C. Luo, Q. Lin, Q. Yan, Z. Ming, A hybrid path
planning method in unmanned air/ground vehicle (UAV/UGV)
cooperative systems, IEEE Transactions on Vehicular Technol-
ogy 65 (12) (2016) 9585–9596.

[15] J. Kwak, Y. Sung, Autonomous UAV flight control for GPS-
based navigation, IEEE Access 6 (2018) 37947–37955.

[16] X. Sun, Y. Liu, W. Yao, N. Qi, Triple-stage path prediction
algorithm for real-time mission planning of multi-UAV, Elec-
tronics Letters 51 (19) (2015) 1490–1492.

16

https://doi.org/10.1016/j.autcon.2017.04.013
https://doi.org/10.1016/j.asoc.2020.106705
https://doi.org/10.2514/1.5791
https://doi.org/10.1137/S0097539795290477
https://doi.org/10.1137/S0097539795290477

[17] J. Barraquand, B. Langlois, J. . Latombe, Numerical potential
field techniques for robot path planning, IEEE Transactions on
Systems, Man, and Cybernetics 22 (2) (1992) 224–241.

[18] J. Tang, J. Sun, C. Lu, S. Lao, Optimized artificial potential
field algorithm to multi-unmanned aerial vehicle coordinated
trajectory planning and collision avoidance in three-dimensional
environment, Proceedings of the Institution of Mechanical Engi-
neers, Part G: Journal of Aerospace Engineering 233 (16) (2019)
6032–6043. doi:10.1177/0954410019844434.

[19] G.-c. Luo, J.-q. Yu, Y.-s. Mei, S.-y. Zhang, UAV path plan-
ning in mixed-obstacle environment via artificial potential field
method improved by additional control force, Asian Journal of
Control 17 (5) (2015) 1600–1610. doi:10.1002/asjc.960.

[20] Y. bo Chen, G. chen Luo, Y. song Mei, J. qiao Yu, X. long
Su, UAV path planning using artificial potential field method
updated by optimal control theory, International Journal of Sys-
tems Science 47 (6) (2016) 1407–1420. doi:10.1080/00207721.
2014.929191.

[21] H. Heidari, M. Saska, Collision-free trajectory planning of multi-
rotor UAVs in a wind condition based on modified potential
field, Mechanism and Machine Theory 156 (2021) 104140. doi:
10.1016/j.mechmachtheory.2020.104140.

[22] B. Di, R. Zhou, H. Duan, Potential field based receding horizon
motion planning for centrality-aware multiple UAV cooperative
surveillance, Aerospace Science and Technology 46 (2015) 386
– 397. doi:10.1016/j.ast.2015.08.006.

[23] P.-C. Song, J.-S. Pan, S.-C. Chu, A parallel compact cuckoo
search algorithm for three-dimensional path planning, Applied
Soft Computing 94 (2020) 106443. doi:10.1016/j.asoc.2020.

106443.
[24] V. Roberge, M. Tarbouchi, G. Labonte, Fast genetic algorithm

path planner for fixed-wing military UAV using GPU, IEEE
Transactions on Aerospace and Electronic Systems 54 (5) (2018)
2105–2117. doi:10.1109/TAES.2018.2807558.

[25] V. Roberge, M. Tarbouchi, G. Labonte, Comparison of parallel
genetic algorithm and particle swarm optimization for real-time
UAV path planning, IEEE Transactions on Industrial Informat-
ics 9 (1) (2013) 132–141. doi:10.1109/TII.2012.2198665.

[26] Y. Fu, M. Ding, C. Zhou, H. Hu, Route planning for un-
manned aerial vehicle (UAV) on the sea using hybrid differential
evolution and quantum-behaved particle swarm optimization,
IEEE Transactions on Systems, Man, and Cybernetics: Systems
43 (6) (2013) 1451–1465. doi:10.1109/TSMC.2013.2248146.

[27] Z. Sun, J. Wu, J. Yang, Y. Huang, C. Li, D. Li, Path planning
for GEO-UAV bistatic SAR using constrained adaptive mul-
tiobjective differential evolution, IEEE Transactions on Geo-
science and Remote Sensing 54 (11) (2016) 6444–6457. doi:

10.1109/TGRS.2016.2585184.
[28] C. Xu, H. Duan, F. Liu, Chaotic artificial bee colony ap-

proach to uninhabited combat air vehicle (UCAV) path plan-
ning, Aerospace Science and Technology 14 (8) (2010) 535 –
541. doi:10.1016/j.ast.2010.04.008.

[29] X. Yu, W. Chen, T. Gu, H. Yuan, H. Zhang, J. Zhang, ACO-A*:
Ant colony optimization plus a* for 3-D traveling in environ-
ments with dense obstacles, IEEE Transactions on Evolutionary
Computation 23 (4) (2019) 617–631. doi:10.1109/TEVC.2018.

2878221.
[30] Y. Fu, M. Ding, C. Zhou, Phase angle-encoded and

quantum-behaved particle swarm optimization applied to three-
dimensional route planning for UAV, IEEE Transactions on Sys-
tems, Man, and Cybernetics - Part A: Systems and Humans
42 (2) (2012) 511–526. doi:10.1109/TSMCA.2011.2159586.

[31] J. Kennedy, R. Eberhart, Y. Shi (Eds.), Swarm Intelligence,
Morgan Kaufmann, 2001. doi:10.1016/B978-1-55860-595-4.

X5000-1.
[32] Zwe-Lee Gaing, Particle swarm optimization to solving the eco-

nomic dispatch considering the generator constraints, IEEE
Transactions on Power Systems 18 (3) (2003) 1187–1195. doi:

10.1109/TPWRS.2003.814889.
[33] R. C. Eberhart, Y. Shi, Comparison between genetic algorithms

and particle swarm optimization, in: V. W. Porto, N. Sara-

vanan, D. Waagen, A. E. Eiben (Eds.), Evolutionary Program-
ming VII, Springer Berlin Heidelberg, Berlin, Heidelberg, 1998,
pp. 611–616.

[34] S. Lalwani, H. Sharma, S. C. Satapathy, K. Deep, J. C. Bansal,
A survey on parallel particle swarm optimization algorithms,
Arabian Journal for Science and Engineering 44 (4) (2019)
2899–2923.

[35] P. Das, P. Jena, Multi-robot path planning using improved
particle swarm optimization algorithm through novel evolu-
tionary operators, Applied Soft Computing 92 (2020) 106312.
doi:10.1016/j.asoc.2020.106312.

[36] Y. Zhang, D. Gong, X. Sun, N. Geng, Adaptive bare-bones par-
ticle swarm optimization algorithm and its convergence analy-
sis, Soft Computing 18 (7) (2014) 1337–1352. doi:10.1007/

s00500-013-1147-y.
[37] Y. Zhang, D. Gong, J. Zhang, Robot path planning in uncertain

environment using multi-objective particle swarm optimization,
Neurocomputing 103 (2013) 172–185. doi:10.1016/j.neucom.

2012.09.019.
[38] N. Geng, X. Sun, D. Gong, Y. Zhang, Solving robot path plan-

ning in an environment with terrains based on interval multi-
objective PSO, International Journal of Robotics and Automa-
tion 31 (2) (2016) 100–110. doi:10.2316/Journal.206.2016.2.
206-4338.

[39] W.-M. Zhong, S.-J. Li, F. Qian, θ-PSO: a new strategy of
particle swarm optimization, Journal of Zhejiang University-
SCIENCE A 9 (6) (2008) 786–790. doi:10.1631/jzus.A071278.

[40] V. T. Hoang, M. D. Phung, T. H. Dinh, Q. P. Ha, Angle-
encoded swarm optimization for UAV formation path plan-
ning, in: 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2018, pp. 5239–5244. doi:

10.1109/IROS.2018.8593930.
[41] J. Sun, W. Fang, X. Wu, V. Palade, W. Xu, Quantum-behaved

particle swarm optimization: Analysis of individual particle
behavior and parameter selection, Evolutionary Computation
20 (3) (2012) 349–393. doi:10.1162/EVCO_a_00049.

[42] M. Clerc, Discrete particle swarm optimization, illustrated by
the traveling salesman problem, in: New optimization tech-
niques in engineering, Springer, 2004, pp. 219–239.

[43] Geoscience Australia, Digital elevation model (DEM) of Aus-
tralia derived from LiDAR 5 metre grid, Commonwealth of Aus-
tralia and Geoscience Australia, Canberra (2015).

[44] H. Hsu, P. A. Lachenbruch, Paired t Test, American Cancer
Society, 2005. doi:10.1002/0470011815.b2a15112.

[45] D. Karaboga, B. Basturk, On the performance of artificial bee
colony (abc) algorithm, Applied Soft Computing 8 (1) (2008)
687 – 697. doi:10.1016/j.asoc.2007.05.007.

[46] R. Storn, K. Price, Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces, Journal
of global optimization 11 (4) (1997) 341–359. doi:10.1023/A:

1008202821328.
[47] Q. Li, S.-Y. Liu, X.-S. Yang, Influence of initialization on the

performance of metaheuristic optimizers, Applied Soft Comput-
ing 91 (2020) 106193. doi:10.1016/j.asoc.2020.106193.

[48] H. Hakli, H. Uguz, A novel particle swarm optimization algo-
rithm with levy flight, Applied Soft Computing 23 (2014) 333–
345. doi:10.1016/j.asoc.2014.06.034.

17

https://doi.org/10.1177/0954410019844434
https://doi.org/10.1002/asjc.960
https://doi.org/10.1080/00207721.2014.929191
https://doi.org/10.1080/00207721.2014.929191
https://doi.org/10.1016/j.mechmachtheory.2020.104140
https://doi.org/10.1016/j.mechmachtheory.2020.104140
https://doi.org/10.1016/j.ast.2015.08.006
https://doi.org/10.1016/j.asoc.2020.106443
https://doi.org/10.1016/j.asoc.2020.106443
https://doi.org/10.1109/TAES.2018.2807558
https://doi.org/10.1109/TII.2012.2198665
https://doi.org/10.1109/TSMC.2013.2248146
https://doi.org/10.1109/TGRS.2016.2585184
https://doi.org/10.1109/TGRS.2016.2585184
https://doi.org/10.1016/j.ast.2010.04.008
https://doi.org/10.1109/TEVC.2018.2878221
https://doi.org/10.1109/TEVC.2018.2878221
https://doi.org/10.1109/TSMCA.2011.2159586
https://doi.org/10.1016/B978-1-55860-595-4.X5000-1
https://doi.org/10.1016/B978-1-55860-595-4.X5000-1
https://doi.org/10.1109/TPWRS.2003.814889
https://doi.org/10.1109/TPWRS.2003.814889
https://doi.org/10.1016/j.asoc.2020.106312
https://doi.org/10.1007/s00500-013-1147-y
https://doi.org/10.1007/s00500-013-1147-y
https://doi.org/10.1016/j.neucom.2012.09.019
https://doi.org/10.1016/j.neucom.2012.09.019
https://doi.org/10.2316/Journal.206.2016.2.206-4338
https://doi.org/10.2316/Journal.206.2016.2.206-4338
https://doi.org/10.1631/jzus.A071278
https://doi.org/10.1109/IROS.2018.8593930
https://doi.org/10.1109/IROS.2018.8593930
https://doi.org/10.1162/EVCO_a_00049
https://doi.org/10.1002/0470011815.b2a15112
https://doi.org/10.1016/j.asoc.2007.05.007
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1016/j.asoc.2020.106193
https://doi.org/10.1016/j.asoc.2014.06.034

	Introduction
	Problem Formulation
	Path optimality
	Safety and feasibility constraints
	Overall cost function

	Related PSO algorithms for UAV path planning
	Particle swarm optimization
	Phase angle-encoded particle swarm optimization
	Quantum-behaved particle swarm optimization

	Spherical vector-based PSO for UAV path planning
	Spherical vector-based PSO algorithm
	Implementation of SPSO for UAV path planning

	Results
	Scenario setup
	Comparison between PSO algorithms
	Comparison with other metaheuristic algorithms
	Experimental verification
	Discussion

	Conclusion

