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Abstract— Malware attacks have been among the most 

serious threats to cyber security in the last decade. Anti-

malware software can help safeguard information systems and 

minimize their exposure to the malware. Most of anti-malware 

programs detect malware instances based on signature or 

pattern matching. Data mining and machine learning 

techniques can be used to automatically detect models and 

patterns behind different types of malware variants. However, 

traditional machine-based learning techniques such as SVM, 

decision trees and naive Bayes seem to be only suitable for 

detecting malicious code, not effective enough for complex 

problems such as classification. In this article, we propose a new 

prototype extraction method for non-traditional prototype-

based machine learning classification. The prototypes are 

extracted using hypercuboids. Each hypercuboid covers all 

training data points of a malware family. Then we choose the 

data points nearest to the hyperplanes as the prototypes. 

Malware samples will be classified based on the distances to the 

prototypes. Experiments results show that our proposition leads 

to F1 score of 96.5% for classification of known malware and 

97.7% for classification of unknown malware, both better than 

the original prototype-based classification method. 
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I. INTRODUCTION 

Malware, also known as malicious code, refers to a 
program covertly inserted into a system with the intent of 
compromising the security of the victim’s data, applications, 
or operating systems. There are many types of malware such 
as Trojan, worm, spyware, rootkit... Along with the rapid 
development of the Internet, the number of malware is 
increasing day by day. Although significant improvements 
have been made in anti-malware solutions, more and more 
sophisticated propagation technology and detection evasion 
techniques have been used. Therefore, malware is still a 
significant threat to computer systems. Detection and analysis 
of the malware behaviors are critical to the minimization of 
the consequential damages.  

Malware analysis refers to the process of determining their 
purposes, behaviors, payload methods, and propagation 
mechanisms. The analysis is usually performed manually by 
domain experts. Recently, the research community seeks to 
automate parts of the process to aid the domain experts in their 
work and reduce the time required. According to [1], an 
automatic malware analysis aims to achieve one of the 
following objectives: malware detection, similarity detection, 
and category detection. Some examples of malware detection 
include [2], [8], and [9]. Refer to [3], [5], and [10] for 
examples of similarity analysis. Malware classification is 
studied in [4], [6], [11], [14], and [16].  

In this work, we focus on solving the malware 
classification problem by using specifically widely known 
supervised machine learning methods. According to [13], 
there exist two distinguished approaches to supervised 
learning: model-based learning and instance-based learning. 
The model-based learning algorithms such as SVM (support 
vector machine), Naive Bayes, and decision trees seek to 
construct a model that generalizes the training data. If the 
input data is too complex, it can become very difficult to find 
an appropriate model for representing the data instances. 
Meanwhile, the instance-based learning algorithms such as k-
NN (k Nearest Neighbors), radial basis function networks, and 
kernel machines make the classification decisions by 
comparing the new malware instances with the representative 
instances extracted from the training dataset during the 
training phase. Each representative instance, also called 
prototypes, belongs to a malware family and is considered as 
a representative of that family. Each malware family can have 
more than one representative instance. As there can be more 
flexibility in the selection of individual representative 
instances compared to construction of a single model, we opt 
for instance-based learning for malware classification. 

In particular, our work is inspired by the instance-based 
classification methods proposed in [4], [6], and [12]. The 
method in [6] uses information about the n-grams of system 
calls to embed the behaviors of malware samples into a vector 
space called feature space. Each component of a feature vector 
is a value 0 or 1 that denotes the presence or absence of the 
respective system call n-gram.  The proposed algorithm 
includes a prototype extraction phase for finding the 
prototypes representing the clusters/classes of malware 
samples; a clustering phase that uses the prototypes to group 
unknown samples into clusters; and a classification phase that 
uses also the prototypes but this time to predict class labels for 
known malicious codes, and detect novel malicious codes. 
The method in [4], called Dendroid, classifies malware 
instances by using text mining and information retrieval 
techniques. Each malware family is represented by a family 
feature vector, a concept similar to prototypes but while each 
prototype must correspond to malware instance, it is not 
necessarily so for the family feature vectors. After the family 
feature vector extraction phase, a 1-NN (One Nearest 
Neighbors) algorithm is used for classification. In [12] the 
authors also construct family feature vectors for representing 
malware families. Then, unknown malware are classified 
based on the similarities with the family feature vectors. 

In this paper, we propose a new prototype extraction 
method for the above process. During the training phase, we 
extract prototypes only from the labeled malware samples 
instead of all the samples in the dataset. Then a hypercuboid 
is constructed for each malware class, each hypercuboid 
surrounds all the samples of a malware class. We choose the 



data points on the hyperplanes as prototypes. We evaluate the 
performances of our proposed method for classifying known 
classes and rejecting unknown classes by using the F1-
measure metric computed from precision and recall. The 
experimental results show F1-mesures of 96.5% for 
classification of known malware and 97.7% for classification 
of unknown malware, both better than Rieck et al.’s method. 

II. PREVIOUS PROTOTYPE-BASED MALWARE CLASSIFICATION 

METHODS 

The work in [6] concerns open-world classification as the 
proposed prototype-based method can detect and classify 
instances of unknown malware classes. The compression of 
each malware family into a small set of prototypes 
representing the whole family allows to reduce the volume of 
data to be processed and the classification time. Another 
advantage is the possibility of incremental learning, where the 
the sets of prototypes can be easily updated when new training 
data is added, without the need for retraining from scratch. 

The classification process goes through the following 
steps: 

• Running in sandbox 

• Embedding of behaviour 

• Prototype extraction 

• Classification using prototypes 

• Clustering using prototypes 

During the first step, the malware sample to be classified 
is run and monitored within a sandbox environment to collect 
the generated sequence of system calls. At the next step, the 
sequence of system calls is represented as a binary feature 
vector of n-grams. Each component of the feature vector is a 
value 0 or 1 that denotes the presence or absence of the 
respective system call n-gram. Then, the feature vector is 
normalized by dividing it by its Euclidean length to create a 
vector of length 1. During the classification using prototypes 
step, the current malware sample is classified based on the 
geometric distances between of its feature vector and the 
existing prototype vectors. The shortest Euclidean distance 
from the unknown malware sample to an existing prototype is 
computed. The sample is put into the corresponding malware 
class if this distance is less than a predetermined threshold dr. 
Otherwise, it serves as an input to the next prototype 
extraction phase, the purpose of which is to find new 
prototypes for representing the remaining malware classes. 
The prototypes are extracted from the set of unclassified 
malware samples using an algorithm adapted from the linear-
time algorithm proposed by Gonzalez in [15]. The first 
prototype can be predefined or randomly chosen. All data 
points near each prototype will be grouped together into a 
cluster. "Near" here means the distances from those data 
points to the given prototype must be smaller than a 
predetermined threshold dp. Then, the farthest point from the 
current prototypes is chosen as a new prototype. The 
procedure is repeated until each data point belongs to a cluster. 
Following the prototype extraction phase is the clustering 
phase, during which the prototypes are regrouped together to 
create large enough clusters. The idea behind the merge 
procedure is that the smaller the distance between the two 
prototypes is, the more likely they belong to the same family. 
The extracted prototypes will be used for the classification of 
the next malware sample.  

In [4] Suarez-Tangil et al. propose a malware 
classification method based on the so called family feature 
vectors, using text mining and information retrieval 
techniques for Android malware classification. The method 
contains three phases:  

• Modeling phase 

• Classification phase 

• Analysis phase  

During the modeling phase, for each malware family, a 
family feature vector is calculated from all its instances. 
Consequently, each family has only one representative feature 
vector. If there are for example 12 malware families, then 12 
family feature vectors will be constructed and used. A family 
feature vector can correspond to a virtual data point or a real 
data point. They are used as references when classifying 
malware samples. At the classification phase, each malware 
sample is modeled as a feature vector, then it is assigned to a 
certain family if its feature vector is the nearest to that family’s 
representative feature vector. In the final analysis phase, 
hierarchical clustering and linkage analysis techniques are 
used to recognize the relationships between the different types 
of malware instances. Dendroid method is not an open-world 
classification as every input malware sample is sure to be 
assigned to a known family, but the concept of representative 
feature vectors is quite similar to prototypes. 

In [12], Shrestha et al. also use prototypes to represent 
malware families. Each family of malware is represented by 
only one feature vector, just like Suarez-Tangil et al.’s 
method. In order to build prototypes, all the files belonging to 
a same malware family are merged to form a new one. The 
authors compute the tf-idf value of each printable string in this 
file. Then, they construct a prototype vector from the printable 
strings and the corresponding tf-idf values for representing the 
malware family. The procedure is repeated for each of the 
malware families in the training dataset. The assignment of a 
family label to a malware sample is made based on the 
comparison results of the cosine similarities between its 
feature vector and the prototype vectors.  The malware sample 
will get classified into the family that has the highest similarity 
score with it. 

Dendroid [2] and the method proposed by P. Shrestha et 
al. [3] have quite different training methods compared to [6]. 
For each malware family, a single representative feature 
vector is built only from the training data belonging to that 
family instead of several instances being chosen from the 
whole training dataset. 

III. OUR HYPERCUBOID-BASED PROPOSITION FOR PROTOTYPE 

EXTRACTION 

We find that the previous prototype extraction methods 
exhibit the following problems. 

First, the prototypes in [6] are extracted from all malware 
samples in the training dataset. That can lead to mistakes such 
as grouping samples that are not in the same malware family 
into the same cluster or choosing as the representative 
prototype for a group a sample that is not in the same malware 
family as the majority of samples in the group. The methods 
in [4] and [12], which construct a prototype by using only the 
samples in the same malware family can overcome this 
problem of the first method. However, they only use one point 



to represent a family, this might lead to loss of too much 
information. 

The second problem is that prototypes in the distance–
based prototype extraction method are selected purely based 
on distances, without using any information on directions, this 
might lead to directional bias in the multi-dimensional space. 
In case a sample to be classified should belong to a certain 
family, but in the direction to this sample there are not any 
prototypes, the malware may be classified wrongly to another 
family. 

We propose a method for better representing the malware 
families with a novel concept of prototypes constructed based 
on hypercuboids. For each malware family, we build a 
hypercuboid that surrounds all its data points. The faces of the 
hypercuboid represent the directions in the feature vector 
space. We choose as prototypes the closest points to the 
hyperplanes of the hypercuboid. Using this technique we can 
obtain prototypes in all directions, thus break the directional 
bias that may occur with the previous prototype extraction 
methods. Additionally, as the number of prototypes extracted 
from a malware family somehow corresponds to its size and 
variety in the feature vector space, we can expect to have 
enough prototypes for representing it. 

Figures 1, 2, and 3 illustrate the differences in prototype 
extraction between our proposition and the previous methods. 

Note:  

Δ: class 1, O: class 2, ☐: class 3 

Bold points are prototypes (or family feature points) in the 
training data set 

 

 
Fig. 1. Prototype extraction in [6] 

 
Fig. 2. Extraction of family feature points/prototypes in [4] and [12] 

 
Fig. 3. Our proposition for prototype extraction 

Figure 1 illustrates the probable situations that the points 
of class Δ are clustered in the same group as the prototype of 
class O, and that the prototype of class Δ represents many 
points of class O. 

In Figure  2, each family feature point is aggregated from 
all data points in the same family. A family feature point can 
be a real data points or a virtual point that does not exist in the 
corresponding family. All data points of a family are 
represented by only one family feature point. 

Figure 3 shows that all prototypes of the class ☐ are data 
points of this class, and the same goes for classes O and Δ. 
Although there is a point not belonging to any clusters, it 
represents itself, instead of falsely representing other classes. 
All points in each cluster are characterized by the prototypes 
belonging to the cluster itself. Moreover, each family is 
represented by many prototypes so we do not lose much 
information. 

a) Prototypes are biased in 
direction 

b) Our prototypes are not biased in 
direction 

Fig. 4. Comparison of our prototypes and the prototypes in [6] 

Figure 4.a illustrates a directional bias in prototype 
extraction. The sample data point to be classified (circle with 
cross symbol) is located in the direction where there are no 
prototypes, so it can be easily misclassified. 

Figure 4.b illustrates the prototypes that are the closest to 
the faces of a hypercuboid (for the two-dimensional space, the 
hypercuboid is a rectangle). We can find prototypes in all 
directions. For any malware family, there is always a 
prototype near any sample data point belonging to it (circle 
with cross symbol) in any direction. 

The idea of our algorithm is as follows. For each family, 
build a hypercuboid around all its data points. The 
hypercuboid is constructed from two initial points, one with 
the minimum coordinates in all dimensions and the other with 



the maximum coordinates. Then, from these two outmost 
vertices, we draw the lines parallel to the coordinate axes, the 
lines intersect creating new vertices, from new vertices, we 
continue to draw new lines parallel to the coordinate axes, and 
so on. Finally, we obtain a hypercuboid surrounding all the 
given elements in the malware family. Once constructed, the 
data points on the hyperplanes of a hypercuboid will be chosen 
as prototypes for the corresponding malware family. 

Figure 5 shows the pseudocode of our prototype extraction 
algorithm. 

Algorithm for prototype extraction 

prototypes ← Ø 

for l ∈ families 

 prototypes[l] ← Ø 

 for i ∈ dimensions in the feature space 

  min[l] = the minimum value in dimension i of 
data points in family l 

  max[l] = the maximum value in dimension i 
of data points in family l 

  for x ∈ data points in family l 

  if x[i] = min[l] or x[i] = max[l] 

    prototypes[l] += x 

    break 

Fig. 5. Prototype extraction using hypercuboids 

IV. EXPERIMENTS AND EVALUATION 

A. Dataset 

We use the dataset referenced in Rieck et al.’s work [6] for 
our experiments. This dataset contains the malware samples 
extracted from the large malware database maintained at the 
CWSandbox website and labeled by 6 different well-known 
anti-virus products.  After removing classes with too few (less 
than 20) samples and too many (more than 300) samples, 3133 
behavioral samples were obtained. The malware samples are 
grouped into 24 classes. Some typical malware families in the 
dataset are Bancos with 48 samples, Podnuha and Rotator with 
300 samples, Posion with 26 samples, Sality with 85 samples, 
and Virus with 202 samples. As we focus on malware 
classification rather than detection, the used dataset contains 
only malicious samples, no benign samples. 

B. Feature extraction 

From the dataset, we extract the level 1 system call 
sequences (only the names of the system calls, no argument 
information) and find that there are overall 85 system calls. 
With the sequence of system calls obtained from each 
malware sample, we proceed to the extraction of the 
corresponding binary vector of 2-grams (2-grams mean 2 
consecutive system calls), each component of which is a value 
0 or 1 denoting the presence or absence of the respective 
system call 2-gram. 

For example, let A = {a1, a2} be a set of all possible system 
calls, then S = {a1a1, a1a2, a2a1, a2a2} is the set of all possible 2-
grams. Suppose we have a system call sequence a1a2a1a1a1. 
Table I shows the presence or absence of each 2-gram in this 

call sequence. Then, the corresponding feature vector is x = 
(1, 1, 1, 0). We normalize the vector x so that it has unit length.  
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TABLE I.  THE PRESENCE OR ABSENCE OF 2-GRAM 

2-gram a1a1 a1a2 a2a1 a2a2 
presence 1 1 1 0 

 

The normalized feature vector is used to represent each 
malware sample. 

The reason for the choice of binary vectors is that through 
experiments, we found that it allows to obtain higher 
efficiency than the use of frequency vectors. As there are 
totally 85 different system calls in the dataset, the size of the 
feature vector space is 85×85. But since there are many zero 
components, it is possible to extract and compare the feature 
vectors in linear time. Refer to [7] for a detailed discussion of 
the linear time algorithms for comparison of sequential data. 

C. Evaluation 

We evaluate our proposed hypercuboid-based prototype 
extraction method in terms of the abilities to classify known 
classes of malware and recognize new classes, using the F1 
score metric, which is a mix of two standard measures 
Precision and Recall. The Precision indicates how many of the 
predicted positive cases are actually positive. The Recall 
shows how many of the actual positives are labeled as 
positives. F1 score balances Precision and Recall. For 
example, a classifier with Precision = Recall = 0.5 is better 
than another classifier with Precision = 0.2 and Recall = 0.8 
according to the F1 score measure. 

Following are the definitions of the metrics: 

• Number of true positives for class i 

TPi = The number of samples belonging to class i that 

are correctly assigned to class i 

• Number of false positives for class i 

FPi = The number of samples not belonging to class i 

that are incorrectly assigned to class i 

• Number of true negatives for class i 

TNi = The number of samples not belonging to class i 

that are correctly not assigned to class i 

• Number of false positives for class i 

FNi = The number of samples belonging to class i but 

are incorrectly not assigned to class i 

• Average precision: 
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• Average recall: 
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• F1 score: 
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 The F1 score varies in the range from 0 to 1. The higher 
the value is, the better the classification is. We evaluate the 
following F1 score metrics. 

• F1 score for classification of known malware classes  

Fk = F1 score on a dataset with known labels 

• F1 score for rejection of unknown malware classes 
(not appearing in the training phase) 

Fu = F1 score on an unlabeled dataset 

 Both the ability to identify novel malware (Fu) and the 
ability to classify known malware (Fk) depend on the choice 
of a distance threshold (dr) for separating unknown malware 
samples from known malware classes. The bigger we choose 
dr, the lower Fu will be and the higher Fk, because the less 
malware samples will be rejected. On contrary, the smaller dr 
is, the higher Fu will be and the lower Fk. In the training phase, 
we determine the optimal value for dr such that both Fk and Fu 
are the highest possible. 

 The overall 24 class dataset is divided in the ratio of 70% 
for training and 30% for testing. But only 18 of the 24 classes 
are used in the training phase and for evaluating Fk. The 
remaining 6 classes in the testing part are used for evaluating 
Fu. The training part of the dataset doesn’t contain any 
instances of these 6 classes. We do not divide the total number 
of classes into two halves as in [6], as the number of new 
malware families is usually small in comparison with the 
number of old known malware families. We perform each 
experiment 10 times and take the average of the results for our 
proposed method and the distance–based prototype extraction 
method in [6]. Table II show the obtained average results for 
dr varying from 0 to 1. 

TABLE II.  CLASSIFICATION PERFORMANCES WITH VARIED DR VALUES  

dr 
Fk-

proposed 
Fu-

proposed 
Fk-[6] Fu-[6] 

0 0 1 0 1 

0.1 0.473 0.983 0.133 0.994 

0.2 0.743 0.983 0.251 0.994 

0.3 0.931 0.983 0.831 0.994 

0.4 0.965 0.977 0.890 0.992 

0.5 0.977 0.880 0.932 0.910 

0.6 0.987 0.805 0.940 0.804 

0.7 0.991 0.743 0.943 0.716 

0.8 0.994 0.685 0.941 0.716 

0.9 0.994 0.499 0.942 0.544 

1 0.995 0.420 0.942 0.496 

 

Our goal is to choose a threshold value dr such that both 
Fk and Fu measures are the highest possible. The best dr value 

for Rieck et al.’s method [6] is 0.5, which corresponds to Fk = 
0.932 (93.2%) and Fu = 0.901 (90.1%). Meanwhile, the F1 
score measures of our method are optimal at dr = 0.4 with Fk 
increased to 0.965 (96.5%) and Fu increased to 0.977 (97.7%). 
Therefore, we can conclude that our method is more efficient 
than Rieck et al.’s method. Figure 6 shows the F1 score – 
distance threshold graphs of the two methods. 

 

Fig. 6. Comparison of the F1 scores 

V. CONCLUSION 

We presented a simple novel method for prototype 
extraction in view of open-world malware classification. 
Experimental results showed that our proposed method is 
quite efficient, achieving F1-micro scores of 96.5% for 
classification of know malware and 97.7% for detection of 
new malware, overcoming the disadvantages of the original 
prototype-based method. But our method of extracting the 
prototypes using hypercuboids might be suitable only when 
data points are clustered in distinct small areas. In these cases, 
the data points nearest to the hyperplanes will properly 
represent each malware family because the all its data points 
are likely located in the vicinity of the prototypes. But in the 
cases where data points of a malware family are distributed 
over a large area, the data points in the center can be far from 
the prototypes. Therefore, more careful considerations should 
be carried out for our proposition to be effective for more 
diverse datasets. 
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