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Abstract
This paper presents the purely fast Lagrangian vortex method (FLVM) for the simulation of the external incompressible flows 
past heaving and pitching bodies with high-frequency oscillation. The Nascent vortex element is introduced to the flow field 
to retain the Lagrangian characteristics of the solver. The viscous effect is modeled using a core spreading method coupled 
with the splitting and merging spatial adaptation scheme. The particle’s velocity is calculated using Biot–Savart formula-
tion. To accelerate computation, a fast multipole method (FMM) is employed. The validity of FLVM solver is verified by 
temporal and spatial convergence studies for the case of flows past an impulsively started cylinder at the Reynolds numbers 
ranging from 50 to 9500. The accuracy of FLVM is then confirmed for the simulation of flows around the pitching flat plate 
and oscillating airfoil. The time history of drag and lift coefficients and the vorticity contours show a good agreement with 
those reported in literature. Furthermore, the FLVM is employed to determine the flutter derivatives and flutter speed of an 
oscillating flat plate. Results are compared with theoretical solutions based on Theodorsen’s function. In general, the results 
agree well with those obtained by the inviscid theory.

Keywords Vortex particle method · Core spreading method · Viscous flow · Flutter derivatives · Flutter speed · High 
frequency oscillation

1 Introduction

Fluid structure interaction of engineering structures is where 
fluid flow exerts pressure on a solid structure causing it to 
collapse such that it perturbs the initial fluid flow. This type 
of interaction causes the aeroelastic instability phenomenon 
due to self-induced forces. In addition, the aeroelastic insta-
bility, which introduces the structural flutter, leads to large 
vibration amplitudes of structures. Eventually, the flutter 
instability collapses the structures totally, see Scanlan and 

Tomo [1]. Hence, the comprehensive understanding of flut-
ter instability plays an essentially important role to deter-
mine a standard criterion for the engineering designs and 
similarly to other criterions related to effects of dead load, 
live load, and possibly earthquake.

Recently, wind tunnel testing was frequently used to 
determine the flutter stability of bridges [1–3]. Section 
model tests have shown to be an inexpensive, reliable, and 
robust experimental tool. Nevertheless, various compu-
tational fluid dynamics (CFD) methods have been devel-
oped in recent years to contribute alternative features along 
with tremendous development of the computing power and 
speed. That is because the better understanding of vorti-
cal flow structures is improved by numerical tools of flow 
visualization. In addition, the economic cost can be cut off 
by substituting the wind tunnel testing by numerical cal-
culations in the preliminary stage of aerodynamic designs. 
Edward and William [4] applied a potential theory based 
on a doublet-lattice method to compute lift coefficients on 
oscillating surfaces under subsonic flow configuration. The 
lifting surfaces are linearized and idealized as a set of lift-
ing panels in which the approximate solutions are obtained. 
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Edwards et al. [5] investigated the angle-of-attack effects on 
the time-matching flutter solutions of plunging and pitching 
airfoils in transonic flow conditions using a complex model 
identification technique based on an exponential function. 
The determination of flutter boundaries with respect to angle 
of attack and Mach number was reported with the elimina-
tion of leading edge shocks. The multiple flutter speeds at 
a given mach number were found due to the existence of 
static pitching moments. Alonso and Jameson [6] extracted 
the aeroelastic solutions using a fully implicit time match-
ing algorithm for transonic flow applications. The multigrid 
methods were integrated with the implicit Euler equations 
and a first-order decomposition of the structural equations. 
The flutter boundaries were reported to be consistent with 
existing numerical data. Prananta et al. [7] considered the 
viscous transonic flow simulation using an robust efficient 
algorithm based on implicit time matching for the solutions 
of two-dimensional unsteady thin-layer Navier–Stokes equa-
tions to carry out the aeroelastic analysis of a two-degree-
of-freedom airfoil. Hall et al. [8] applied proper orthogonal 
decomposition (POD) technique to build the reduced-order 
model (ROM) of unsteady disturbance for turbulent tran-
sonic flows. The unsteady aerodynamic and aeroelastic solu-
tions of a single airfoil and a two-dimensional cascade of 
airfoils were numerically investigated using the POD/ROM 
algorithm. Bohbot et al. [9] computed the flutter boundary 
of two-degree-of-freedom transonic airfoil using a parallel 
time-matching nonlinear flow solver combined with a struc-
ture solver. The flutter boundary accuracy was obtained with 
three hundred runs using a parallel implicit algorithm. The 
shock wave effects on the airfoil motion, damping effects 
due to flow viscosity on flutter and Hopf bifurcations were 
reported by the solver with the employment of Spalart–All-
maras turbulence model.

Tang and Dowell [10] experimentally and theoretically 
studied the aeroelastic response of high aspect ratio wing 
models due to flutter and limit-cycle oscillations obtained 
by wind tunnel test. The flutter velocity and oscillation fre-
quency were determined by a dynamic perturbation analy-
sis related to nonlinear static equilibrium. The theoretical 
results were made to resurrect the experiment data. Liu et al. 
[11] integrated a unsteady, parallel, multiblock, and mul-
tigrid computational fluid dynamics solver with structural 
dynamics method for prediction and simulation of flutter. 
The structural dynamics method employed the time integra-
tion of modal dynamic equations, which are extracted from 
finite element analysis. The aeroelastic system was directly 
investigated from the time domain for the determination 
of aeroelastic system stability using the indicial response 
as input. Meanwhile the solutions of the flutter bound-
ary via the flutter equation were computed in frequency 
domain. The two- and three-dimensional wing aeroelastic 
models were simultaneously performed to compare with 

experimental data. Chen et al. [12] developed a finite vol-
ume method coupled with a Roe moving grid scheme for the 
fluid–structure interaction to predict the airfoil flutter under 
the transonic flow configuration. The linear structural equa-
tions were implicitly combined through pseudo time step-
ping with sequential iteration. The moving and deformation 
mesh is clarified by fine mesh zone without deformation and 
coarse mesh zone deformed with solid object’s deformation. 
The flutter boundary of elastic airfoil was then computed 
along with aerodynamic coefficients under both the steady 
state flow and limit cycle oscillation (LCO) conditions.

Badcock et al. [13] investigated the direct aeroelastic 
bifurcation analysis of a three-dimensional symmetric flex-
ible AGARD 445.6 wing in inviscid transonic flow configu-
ration using a sparse matrix solver on the solution of Euler 
equations. The determination of the entire flutter bound-
ary of the wing was clarified in a time domain. Badcock 
and Woodgate [14] developed a framework based on the 
combination of computational fluid dynamics and finite ele-
ment solvers to produce highly accurate results in practical 
applications with the support of parallelization algorithms. 
The bifurcation prediction of aeroelastic models of three-
dimensional wing and full aircraft models was investigated 
to confirm the performance of coupling solvers. Badcock 
et al. [15] investigated the aeroelastic numerical models with 
very large dimensions using a computational fluid dynamics 
solver. The full aircraft model was performed to discover 
the nonlinear reduced order models for the computation of 
limit cycle responses. Timme et al. [16] employed Kriging-
assisted Schur complement formulation to determine the 
aeroelastic stability and optimization of full aircraft mod-
els in transonic flow configuration. The numerical results 
were assisted by a Kriging extrapolation to cover the param-
eter space. The kriging-based multiobjective optimization 
of transport wing designated stability analyses for whole 
flight envelopes. Wang et al. [17] numerically applied mesh 
adaptation scheme based on adjoint variables for direct flut-
ter prediction in supersonic flow configuration. The elastic 
structure was modeled using von Karman plate theory while 
the fluid pressure was modeled by potential flow theory with 
the employment of mesh feature-based adaptation scheme.

For the practical applications, at the sufficient high flow 
speeds, flutter instability causes the structure undergoing a 
simple harmonic motion. Otherwise, the forces, developed 
due to a bluff or streamlined bodies undergoing time-depend-
ent motion in a steady fluid flow, will also be harmonic with 
high frequency. Hence, to predict the flutter instability, the 
aerodynamic coefficients of the flutter instability (flutter 
derivatives) are to be evaluated to model the harmonic fluid 
forces by prescribing the motion of a streamlined body to 
be purely translational or purely rotational. Otherwise, the 
critical flutter speed of the streamlined bodies is calculated 
based on the computed flutter derivatives. Hence, the output 
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of the critical flutter speed will be an essential parameter for 
the engineering designs. Apart from the flutter determination 
methods extensively reviewed above, the numerical meth-
ods are classified into grid-based methods (finite element 
method [18], finite volume method [19]) and vortex particle 
methods [20, 21] to determine the aerodynamic coefficients. 
The vortex particle methods are more advantageous than 
the grid-based methods due to its meshfree characteristics, 
which refuses the grid adaptation for the case of flows past a 
structure under harmonic motions. Koumoutsakos and Leon-
ard [22] elaborated an analytical solution, based on vortex 
sheet diffusion induced by vortex panels at solid walls, for 
satisfaction of no-slip boundary condition in vortex methods. 
The vortex sheet scheme was proved to be stable for the wide 
range of Reynolds numbers from 40 to 9500. Ploumhans 
and Winckelmans [23] developed grid-free particle strength 
exchange (PSE) scheme for diffusion in the cases of bounded 
flow simulations. For the convection, the velocity computa-
tion was accelerated using the fast multipole method. To 
support the high-resolution simulations to disregard the par-
ticle distortion, the M′

4
 interpolation scheme, which is a grid-

based approach, was utilized. Ploumhans et al. [24] further 
extended the particle strength exchange scheme and vortex 
sheet algorithm for high-resolution simulation of three-
dimensional unsteady incompressible flows past complex 
geometries. The grid-based non-uniform resolution, namely 
the redistribution lattice mapping, was employed to support 
the use of parallel tree codes in the context of multipole 
expansions of vortex particles and of vortex panels. Kam-
emoto [25] advanced a purely Lagrangian vortex method for 
the practical engineering flow simulations in two- and three-
dimensional incompressible fluids. The no-through and no-
slip boundary conditions for complex geometries were con-
sidered using a boundary element method and introduction 
of Nascent vortex elements from wall panels, respectively. 
However, the Lagrangian error due to the particle distortion 
was not treated in the case of high Reynolds number. Cottet 
and Poncet [26] elaborated an advance in direct numerical 
simulation using particle-in-cell method for three-dimen-
sional incompressible wall-bounded flows. The immersed 
boundary method was carried out for the complex geom-
etries. The particle-in-cell and immersed boundary methods 
were employed to be grid-based approaches for the accelera-
tion of velocity computation and no-slip boundary condi-
tion of wall-bounded geometries, respectively. Yokota et al. 
[27] utilized the purely Lagrangian core spreading vortex 
method for three-dimensional simulation of decaying homo-
geneous isotropic turbulence flows without the presence of 
a solid wall. A fast multipole method was implemented for 
periodic boundary conditions. The meshfree spatial adapta-
tion scheme based on radial basis function technique was 
executed for the consideration of particle distortion. Walther 
and Morgenthal [28] implemented the immersed interface 

technique based on a boundary element method for the 
flow simulation of complex geometries. The particle–mesh 
hybrid method was employed using a vortex-in-cell method 
to resolve the smallest vortex scales due to the existence of 
the immersed interface and to ignore the overlapping issue 
of Lagrangian particles. Huang et al. [29] resurrected the 
purely Lagrangian vortex method by employing meshfree 
core spreading technique and vortex sheet diffusion for dif-
fusion process and no-slip boundary conditions, respectively. 
The core spreading particles were revitalized by splitting 
and merging adaptation schemes to get rid of Lagrangian 
error due to particle overlapping issues. Huang et al. [30] 
continuously extended the core spreading vortex method for 
long time flow simulation of arbitrary geometries. Although 
the capability of the method enables the flow simulations of 
the complex geometries, the complex dynamic motions of 
the geometries, which are essential for practical engineer-
ing applications, were not considered. Hammer et al. [31] 
validated the discrete vortex method based on thin airfoil 
theory for the low Reynolds number unsteady incompress-
ible flow simulations. The no-through and no-slip boundary 
conditions were satisfied and the solver supports the rapid 
computation of flowfield and force coefficients in unsteady 
aerodynamic applications. However, the model of boundary 
layer was not elaborated in the case of low Reynolds number. 
Mimeau et al. [32] applied a continuous forcing immersed 
boundary method, namely vortex penalization method, for 
the direct numerical simulations of flows past obstacles in 
three-dimensional incompressible fluids. The FFT-based 
Poisson solver was utilized for the far field boundary con-
ditions. The penalization method is a grid-based approach 
to deal with the complex geometries in a complex flow 
configuration.

The present work that follows relies on fully resolved 
direct numerical simulations using a purely fast Lagrangian 
vortex method (FLVM) [33, 34]. Specifically, the devel-
oped method simulates the external flows around complex 
geometry by tracking freely local velocities and vorticities 
of particles introduced within the fluid domain. The Nascent 
vortex element is introduced to the flow field to retain the 
purely Lagrangian characteristics of the solver. The viscous 
effect is modeled using a core spreading method coupled 
with the splitting and merging spatial adaptation scheme to 
resolve the boundary layer induced by solid walls. The par-
ticle’s velocity is calculated using Biot–Savart formulation. 
To accelerate computation, a fast multipole method (FMM) 
is employed. Accordingly, the FLVM solver produces the 
aerodynamic forces as an input to determine structural 
characteristics. The quality of calculations using the solver 
does not only depend on the quality of the meshfree solver 
but also to enable its great extent on the modeling of flutter 
instability. Hence, the originality of this work is to extend 
the capability of FLVM computational fluid dynamics to 
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the determination of high frequency structural oscillation 
and aeroelastic instability of structures. In particular, the 
present paper extracts desired aerodynamic data from the 
FLVM solver and demonstrates their importance to aer-
oelastic analysis in engineering applications. Numerical 
solver validation, flow simulations, and discussions of the 
results will be given with reference listed in literature. The 
rest of this paper is organized as follows: Sect. 2 expresses 
the governing equations and numerical method of FLVM, 
Sect. 3 describes the structural analysis solver for the flut-
ter determination, Sect. 4 gives computational setup, Sect. 5 
produces the discussions on results, followed by the conclu-
sions in Sect. 6.

2  Lagrangian vortex method

The vortex methods are based on the momentum equation 
and the continuity equation for incompressible flow which 
are written in vector form as follows:

Taking the curl and divergence operators of Eq. (1) and 
simplify using (2), these equations become:

where u is velocity vector, p the pressure, � the kinematic 
viscosity, and � the density. The vorticity � is defined as

The pressure p can be independently calculated by the 
Poisson Eq. (4) once needed. Lagrangian expression for the 
vorticity transport expressed in Eq. (3) is then given by

When a two-dimensional flow is dealt with, the stretching 
term, which is the first term on the right hand side of Eq. (6), 
disappears and the two-dimensional vorticity transport equa-
tion is simply reduced to diffusion equation:

(1)
�u

�t
+
(
u ⋅ ∇

)
u = −

1

�
∇p + �∇2u

(2)∇ ⋅ u = 0

(3)
��

�t
+
(
u ⋅ ∇

)
� =

(
� ⋅ ∇

)
u + �∇2�,

(4)∇2p = −�∇ ⋅

(
u∇u

)
,

(5)� = ∇ × u.

(6)
d�

dt
=
(
�.∇

)
u + �∇2�.

(7)
d�

dt
= �∇2�.

This equation is solved numerically, using a viscous split-
ting algorithm. The algorithm includes convection and dif-
fusion steps. In the convection step, the particles containing 
the local velocity and vorticity are freely advected by the 
following equation,

With their own local convective velocities using 
Biot–Savart formulation

 where x is the position vector. The term inside integral in 
Eq. (9) is integrated over all particles within the computa-
tional domain. The Biot–Savart formulation is called N-body 
problem that involves O

(
N2

)
 evaluations, which directly 

compute the particle’s velocity. It makes this method not 
practical due to high cost and expensive memory require-
ments. To deal with this issue, the fast multipole method is 
employed to reduce the O

(
N2

)
 to O(NlogN) operations, as 

discussed in more details in the following section. Equa-
tion  (8) is solved using the fourth-order Runge–Kutta 
method:

where Δt is the time step, and u
(
xn
)
 , u

(
x
1

)
 , u

(
x
2

)
 , u

(
x
3

)
 are 

the particle velocities at xn (the particle position at time step 
n ), x

1
 , x

2
 , and x

3
 . The particle locations x

1
 , x

2
 , and x

3
 are 

obtained as follows:

In the diffusion step, the diffusion term �∇2� is evolved 
by spreading the core size of particles in time, which is fur-
ther discussed in the following section.

2.1  Vortex convection with fast multipole method

To overcome the N-body problem mentioned above, the 
fast multipole method (FMM) is employed in this work to 
accelerate the velocity computation following the works of 
Greengard and Rokhlin [35] and Hrycak and Rokhlin [36]. 

(8)
dx

dt
= u

(
x, t

)
.

(9)u
(
x, t

)
=

1

2� ∫
�
(
x�, t

)
×
(
x − x�

)
||x − x�||3

dx�

(10)xn+1 = xn +
Δt

6

(
u
(
xn
)
+ 2u

(
x
1

)
+ 2u

(
x
2

)
+ u

(
x
3

))
,

(11)x
1
= xn + u

(
xn
)Δt
2
,

(12)x
2
= xn + u

(
x
1

)Δt
2
,

(13)x
3
= xn + u

(
x
2

)
Δt.
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The method significantly reduces the velocity computa-
tion time due to the fact that interactions among particles 
are not computed directly. In particular, the FMM employs 
the regularized equation for direct calculation in the short-
range interaction, meanwhile the far-range interaction is still 
considered via singular distributing function and approxi-
mated using the derived multipole and local expansions. 
The implementation of multipole and local expansions for 
approximating the singular distribution equation is used to 
accelerate the regularized equation.

In more details, as depicted in Fig. 1, the FMM initially 
constructs the data of particles by tree structure of the box 
in which particles are laid on, as shown in Fig. 1a,b. After-
wards, the direct interactions of box’s centers are evaluated 
using multipole expansion of all these centers, as demon-
strated in Fig. 1c. Eventually, the interaction of all direct 

particle pairs is translated from these centers to their own 
particles via local expansion. Basically, the multipole expan-
sion is generated by particles inside the circle of radius R 
and converged outside the box. The local expansion is gen-
erated by particles outside the circle of radius R and con-
verged within the box. The multipole and local expansions 
can be referred in more details in [35, 36]. Therefore, it 
reduces huge amount of computation process from O

(
N2

)
 

to O(NlogN).
Figure 2 shows the computational acceleration achieved 

using FMM with 250 and 500 boxes arranged in adaptive 
quad-tree structures. In the figure, computational time using 
the direct Biot–Savart (Eq. 9) and FMM is plotted against 
the number of particles used during a simulation. As can 
be seen, the difference in the computational time between 
the two methods is small up to around 120,000 particles. 

Fig. 1  FMM concept. a 2-D 
domain clustering: adaptive 
quad-tree structure; b tree struc-
ture for the storage of a particle 
cluster; c local and multipole 
expansions

Fig. 2  a Comparison between direct Biot–Savart and FMM compu-
tational time. b Effect of initial amount of FMM tree boxes on the 
velocity computation in the case of impulsively started cylinder at 
Re = 550. The square-dashed line is the present result with 250 boxes 

of FMM trees. The asterisk-dashed line is the present result with 500 
boxes of FMM trees. The continuous line is the experimental data by 
Buard and Coutanceau [37]
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However, the FMM-based velocity acceleration increases 
drastically as the number of particles increases beyond 
700,000. The more adaptive quad-tree box amount sup-
ports the more speedup of velocity computation. For the 
convergence of the flow field computation, Fig. 2b depicts 
the effect of initial amount of FMM tree boxes on the veloc-
ity computation in the case of impulsively started cylinder 
at Re = 550. As shown in the figure, the more operations of 
multipole and local expansions produces the higher devia-
tion of velocity results with those listed in literature. Conse-
quently, the employment of FMM essentially allows longer 
simulation time, which is found in practical applications.

2.2  Vortex diffusion with adaptation schemes

In the diffusion step, the diffusion term �∇2� in the right-
hand side of diffusion Eq. (7) is evolved by spreading core 
size of particle ( �p(t) =

√
4�Δt ) in time as follows

The total numerical truncation error, the Lagrangian 
effect noticed by Greengard [38], is introduced in solving 
the Eq. (14). This error increases proportionally with the 
spreading rate of change of particle core size. Increasing 
the core size of each particle makes the particle advect with 
its average velocity, rather than its local velocity. Hence, 
there is a need for a spatial adaptation scheme to control the 
core size of the particle to be small enough to minimize the 
Lagrangian effect and maintain the spatial resolution. To 
deal with the Lagrangian effect after spreading the core size 
of particles in time in Eq. (14), Rossi [39] proposed the split-
ting scheme to spatially adapt the flow field. In particular, if 
the core radius of the vortex blob is larger than a threshold, 
then the parent blob is split into the several smaller chil-
dren blobs, and the vortex strengths of the parent blobs are 
divided by the number of the children. Then, the children’s 
core radius is reset into the smaller core radius.

The threshold core size, �max , is chosen to be 
√
6� to suf-

ficiently control the particle distribution over time. On the 
other hand, as long as core size �j is larger than the threshold 
�max , the particle with core size �j would be split into a set 
of thinner core particles, where each particle inside the set 
has core size equal to ��j . This set also satisfies the zero, the 
first moments of vorticity as follow:

(14)
d�i

dt
=

2�

�i
.

(15)Γp =

M∑
c=1

Γc,

(16)Γp xp =

M∑
c=1

Γc xc,

where Γp,Γc stand for vorticity strengths of parent particles 
before splitting event, and children particles after splitting 
event. M is the number of child particles. M is observed to 
be equal to 5 during our simulation for the high-resolution 
results as depicted in Fig. 3. The free parameter r is given by

where � is overlapping parameter and set to be equal to 0.85. 
As a result, the children’s cores are overlapped after several 
splitting events and the splitting scheme eventually intro-
duces the large amount of vortex elements, which is larger 
than the required vortex elements to sufficiently resolve the 
flow. Thus, the merging scheme is also proposed for the par-
ticle population control and the overlapping control. The 
merging scheme is followed by the works of Huang et al. 
[29], and Dung et al. [33].

Figure 4 illustrates the merging adaptation scheme. The 
particles, represented by the red circles, are formed after the 
merging process. The black dots stand for the unmerging 
particles. In this scheme, if 

(
x
j
,Γj, �j, j = 1,…N

)
 are the set 

of nearby particles, then those nearby particles are going to 
be replaced by one x

0
,Γ0, �0  such that

(17)r = �j

√
2
(
1 − �2

)
,

(18)Γ0 =

N∑
j=1

Γj,

(19)Γ0 x0 =

N∑
j=1

Γj xj,

(20)Γ0�0 =

N∑
j=1

Γ0

(
�2
0
+
|||x0 − x

j

|||
2
)
.

Fig. 3  Spitting scheme for a parent particle
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Meanwhile following thresholds should be satisfied

where Γref and � are the reference vorticity strength, and the 
error tolerance, respectively. In further details, the merging 
scheme in the figure is algorithmically expressed step by 
step as follows.

1. Find the region that will be occupied by all the compu-
tational elements as shown in Fig. 4a.

2. Divide  the  region in to  rec tangular  ce l l s 
(Δx = Δy = 0.5�) and select elements within each cell 
and form a set of particle 

(
Γi, xi, �i

)m
i=1

 , where m is the 
number of particles in the cell, as shown in Fig. 4b.

3. Renumber the elements successively from one cell to 
another. For instance, a cell c has m particles.

4. As shown in Fig. 4c, for each cell in which there exists 
more than one element, do the following loop:

a. Consider the neighbors of particle i(i = 1,… ,m).
b. If thresholds (21) and (22) are both satisfied, then 

keep the merging process by solving the Eqs. (18), 
(19) and (20) to get the new merging particle (
Γ0, x0, �0

)
.

c. Renew the merging particle and remove the particle 
i together with its neighbors.

d. If one of these thresholds is not satisfied, then break 
the loop.

The merging process is completed after step 4. The popu-
lation of particles, shown in Fig. 4d after the merging pro-
cess, is reduced and the spatial resolution is maintained.

2.3  No‑through and no‑slip boundary conditions

Bounded flow problems require the enforcement of the no-
through and no-slip conditions on boundary. In the present 

(21)Γ0 < Γref𝜀𝛼
2𝛼2

max
,

(22)𝜎0 < 𝜎max,

FLVM, the no-through enforcement is accomplished through 
the use of boundary element methods (BEM), which was 
utilized by Walther and Morgenthal [28]. The BEM calcu-
lates a vortex sheet’s strength Γ , which represents the slip 
velocity on the boundary to satisfy no-through condition. 
In BEM, the boundary, S is discretized into panels and the 
vortex strength of each panel is calculated. These vortex 
strengths represent initial vorticity vectors on the wall pan-
els. The calculated vortex strength is a vector with wall-
tangent component, t̂ , and a normal component, n̂, which 
satisfied the no-through condition. In the computation of 
vortex panel distribution, the Fredholm integral of second 
kind is employed as

where u
slip

 is spurious slip velocity on the wall that is 
obtained after convection and diffusion steps. G

(
x − x�

)
 

stands for Green function. The Eq. (23) enables the direct 
computation of vortex panel distribution. In the computation 
of a vortex sheet, a problem of uniqueness arises when deal-
ing with multiply connected domains as happened in 2-D 
body. To obtain a unique solution in 2-D, the integral con-
straint of Kelvin’s theorem can be imposed on the system of 
equations. The formulation of integral constraint is

where AB,Ω are the area and the rotation velocity of the wall 
panel, respectively. The system of Eqs. (23) and (24) will be 
discretized into wall panels and lead to a linear system

where M is the coefficient matrix. The right hand side of 
this linear equation is represented by the slip velocity vector 
of the surface. The solution of the linear system (25) will 
be the input for the no-slip boundary condition, which is 

(23)

u
slip

⋅ t̂ =
Γ
(
x�
)
× n̂

2
+ ∫

S

Γ
(
x�
)
× ∇G

(
x − x�

)
⋅ t̂
(
x
)
ds
(
x�
)
.

(24)∮ Γ(s)ds = −2AB(Ω(t + Δt) − Ω(t)),

(25)MΓ = b.

Fig. 4  Illustration of merging scheme. The particles, represented by the red circles, are formed after the merging process. The black dots stand 
for the unmerging particles
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clearly depicted in Fig. 5. The figure shows the generation 
of Nascent vortex elements from the wall followed by the 
work of Kamemoto [25]. As expressed in the figure,Si, hi, ui 
denote, respectively, length of an outer boundary element, 
vorticity layer thickness and tangential velocity at each node 
of the outer boundary.

The Nascent vortex element is convected and diffused 
by velocities: Vc and Vd , respectively, as follows:

where the height of boundary layer at certain panel i , hi , is 
given by

The Nascent vortex element is then replaced by an 
equivalent vortex blob with an area A and vorticity �vor as 
given by the following relations,

(26)Vc =
1

si

(
hiui

2
−

hi+1ui+1

2

)
,

(27)Vd =
drdiffusion

dt
=

1.1362�

rdiffusion

(28)hi = rdiffusion = 1.136
√
�Δt.

(29)hvor =
(
Vc + Vd

)
Δt,

(30)Avor = hvor × si, A = hi × si,

(31)�vor =
Γ

A + Avor

.

In Eq. (31), the circulation Γ is the strength of the vor-
tex sheet, which satisfies no through boundary condition. 
Accordingly, the core size of the initial generated blob is 
calculated as

Once a Nascent vortex element is shed from the wall, 
a new vortex element is redistributed along the wall panel 
for the next time step. The new generation of the vortex 
elements satisfies the no-slip boundary and represents the 
boundary layer.

2.4  Aerodynamic forces and moments

The aerodynamic forces and moments computed from the 
present FLVM are the inputs for the calculation of the flut-
ter derivatives. The classical technique to evaluate the lift 
and drag forces and moments acting on a body is to com-
pute the time derivatives of the linear impulse [40, 41]. The 
linear impulse is based on the vorticity strengths of all par-
ticles in the flow field. This method is very robust and has 
an almost zero computational cost, as it is implemented as 
a sum running over all particles. Since the FLVM solver 
resolved the flow field with uniform resolution, the far wake 
could become well resolved; thereby the accuracy of linear 
impulse and forces is retained.

The lift and drag forces F
(
Fx,Fy

)
 are computed based on 

the linear impulse I
(
Ix, Iy

)
 as follows:

(32)sigblob = 2

√
Γ

��vor

.

Fig. 5  Production of Nascent 
vortex elements
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where � is the density. D is the characteristic length of the 
object. U∞ is free stream velocity, Δt is the incremental time, 
and N is the number of particles. The pitching moment is 
calculated as follows:

 where A = 0.5
N∑
p=1

���xp
���
2

Γ
p
 and B = (cos (𝛼)Ix − sin (𝛼)Iy)êz . 

The vector êz is the unit vector in z-direction (0, 0, 1) and � 
is the angle of attack (AoA). The computed aerodynamic 
forces in two-dimensional cases were expressed in non-
dimensional form using the conventional normalization as 
follows

CD,CL,CM are drag, lift and moment coefficients in two-
dimensional flow cases.

3  Numerical estimation of flutter derivatives 
and flutter speed

At the sufficiently high flow speed, flutter instability causes 
the structure undergoing a simple harmonic motion. Oth-
erwise, the forces, developed due to a bluff or streamlined 
bodies undergoing time-dependent motion in a steady fluid 
flow, will also be harmonic. Hence, to predict the flutter 
instability, the aerodynamic coefficients of the flutter insta-
bility (flutter derivatives) are to be evaluated to model the 
harmonic fluid forces by prescribing the motion of a body to 
be purely translational or purely rotational. Otherwise, the 
critical flutter speed of the obstacles, which is an essential 
parameter for the engineering designs, is calculated based 
on these computed flutter derivatives.

3.1  Determination of flutter derivatives

Flutter derivatives are analytically obtained using Theo-
dorsen’s function [42]. Scanlan and Tomko [1] proposed 

(33)I =

N∑
p=1

x
p
Γ
p
,

(34)

F =
(
1

2
�U2

∞
D
) I(t − Δt) − I(t + Δt)

�U2
∞
DΔt

=
I(t − Δt) − I(t + Δt)

2Δt
,

(35)

M =
(
1

2
�U2

∞
D

2

)(A(t + Δt) − A(t − Δt)

�U2
∞
D2Δt

−
2B

�U∞D
2

)

=
A(t + Δt) − A(t − Δt)

2Δt
− U∞B,

(36)CD =
Fy

1

2
�U2

∞
D
, CL =

Fx

1

2
�U2

∞
D
, CM =

Mz

1

2
�U2

∞
D2

a formulation of motion-induced aerodynamic forces and 
moment suitable for two-dimensional cross sections from 
wind tunnel tests involving six flutter derivatives. Larsen 
and Walther [20] proposed a logical extension with eight 
flutter derivatives. Motivated by the works of Morgenthal 
[21] and Walther and Larsen [43], this work utilizes the 
Larsen’s extension formulation for predicting flutter deriv-
atives of various bridge cross sections using a numeri-
cal experiment. Accordingly, the unsteady aerodynamic 
force and moment acting on a single body can be linearly 
expressed as follows:

where K = 2�fD∕U∞ is reduced frequency and f  is the fre-
quency of harmonic translational or rotational motions. h, ḣ 
are translational motion and its time derivative and 𝛼, �̇� are 
rotational angle around a base and its time derivative. 
H∗

j
,A∗

j
, j = 1,… , 4 are flutter derivatives which are basically 

modeled as a function of K . The flutter derivatives are 
dependent on reduced velocity 

(
U� =

U∞

fD
=

2�

K

)
 for a single 

body. By prescr ibing the translational motion (
h(t) = Ahsin(2�ft)

)
 o r  t h e  r o t a t i o n a l  m o t i o n (

�(t) = A�sin(2�ft)
)
) force Fx and moment Mz on the body 

are directly computed from the FLVM solver using Eqs. (34) 
and (35), respectively. Equations (37) and (38) are reduced to

for purely translational motion, and

for purely rotational motion. The flutter derivatives 
(H∗

1
,H∗

4
,A∗

1
,A∗

4
) can be, therefore, solved by a linear system 

as

(37)

Fx = 𝜌U2
∞
D

[
KH∗

1

ḣ

U∞

+ KH∗
2

D�̇�

U∞

+ K2H∗
3
𝛼 + K2H∗

4

h

D

]
,

(38)

Mz = 𝜌U2
∞
D2

[
KA∗

1

ḣ

U∞

+ KA∗
2

D�̇�

U∞

+ K2A∗
3
𝛼 + K2A∗

4

h

D

]
,

(39)𝜌U2
∞
D

[
KH∗

1

ḣ

U∞

+ K2H∗
4

h

D

]
= Fx

(40)𝜌U2
∞
D2

[
KA∗

1

ḣ

U∞

+ K2A∗
4

h

D

]
= Mz

(41)𝜌U2
∞
D

[
KH∗

2

D�̇�

U∞

+ K2H∗
3
𝛼

]
= Fx

(42)𝜌U2
∞
D2

[
KA∗

2

D�̇�

U∞

+ K2A∗
3
𝛼

]
= Mz,

(43)

(
Kḣ1

U∞

K2h1

D
… …

Kḣn

U∞

K2hn

D

)(
H∗

1
H∗

4

)
=

(
F1
x

𝜌U2
∞
D

…
Fn
x

𝜌U2
∞
D

)
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and

for purely translational motion. The number, n , indicates 
the number of iteration samples at every time step of the 
simulation that records instantaneously the translational 
displacement hj , its time derivative ḣj , lift force Fj

x , and 
moment Mj

z, j = 1,… , n . Similarly, the flutter derivatives 
(H∗

2
,H∗

3
,A∗

2
,A∗

3
) can be, therefore, solved by a linear system 

as

and

for purely rotational motion. The linear matrix systems (43), 
(44), (45), and (46) are solved using least squares technique 
according to the work listed in the reference [43].

3.2  Determination of flutter speed

According to linear expression of force and moment (34) and 
(35), the fully physical system of the heaving and pitching 
body can be expressed as

where �h, ��  are the structural damping ratios. 
Kh =

2�Dfh

U∞

, K� =
2�Df�

U∞

 in which fh, f� are the circular natural 
frequencies of the body for translational and rotational oscil-
lation, respectively. nh =

m

�D2
 is mass ratio and n� =

I

�D4
 is 

the ratio of inertia moment. To predict the flutter instability 
at the certain frequency K , the translational and rotational 
oscillations are assumed to be harmonic with the same fre-
quency K of the vortex shedding of the flow as

(44)

(
Kḣ1

U∞

K2h1

D
… …

Kḣn

U∞

K2hn

D

)(
A∗
1
A∗
4

)
=

(
M1

z

𝜌U2
∞
D2

…
Mn

z

𝜌U2
∞
D2

)

(45)

(
K�̇�1

U∞

K2𝛼1 … …
K�̇�n

U∞

K2𝛼n

)(
H∗

2
H∗

3

)
=

(
F1
x

𝜌U2
∞
D

…
Fn
x

𝜌U2
∞
D

)

(46)

(
K�̇�1

U∞

K2𝛼1 … …
K�̇�n

U∞

K2𝛼n

)(
A∗
2
A∗
3

)
=

(
M1

z

𝜌U2
∞
D2

…
Mn

z

𝜌U2
∞
D2

)

(47)ḧ + 2𝜁hKhḣ + K2
h
h =

𝜌U2
∞
D

nh

[
KH∗

1

ḣ

U∞

+ KH∗
2

D�̇�

U∞

+ K2H∗
3
𝛼 + K2H∗

4

h

D

]
,

(48)�̈� + 2𝜁𝛼K𝛼�̇� + K2
𝛼
𝛼 =

𝜌U2
∞
D2

n𝛼

[
KA∗

1

ḣ

U∞

+ KA∗
2

D�̇�

U∞

+ K2A∗
3
𝛼 + K2A∗

4

h

D

]
,

(49)h(t) = Ahe
iKt,

(50)�(t) = A�e
iKt.

Ah,A� are translational and rotational magnitudes, respec-
tively. Then, substituting Eqs. (49) and (50) into Eqs. (47) 
and (48) and representing in the matrix format, two Eqs. (47) 
and (48) are reduced to

where

To solve the linear system with non-trivial solution, the 
constraint, including the zero determinant of the matrix solu-
tion system, is considered as

The solution of Eq. (56) is then evaluated to determine 
K , which is considered as a complex number K = KR + iKI . 

The real part KR represents the frequency of the oscillation 
and the imaginary part KI indicates whether the oscillation 
of the body is decaying or growing. The positive KI sug-
gests the decaying oscillation and the negative represents 
the growing oscillation.

4  Computational setup

To validate the performance of the FLVM solver, the simu-
lations of flow over an impulsively started circular cylinder 
are performed at Reynolds number 

(
Re =

U∞D

�
= 550

)
, 

(51)
[
A B C D

][
Ah A�

]
=
[
0 0

]
,

(52)

A = −K2 + 2�hKhKi + K2
h
−

�U∞D

nh
K2H∗

1
i −

�U2
∞

nh
K2H∗

4
,

(53)B =
�U∞D

2

nh
K2H∗

2
i −

�U2
∞
D

nh
K2H∗

3
,

(54)C = −
�U∞D

2

n�
K2A∗

1
i −

�U2
∞
D

n�
K2A∗

4

(55)
D = − K2 + 2��K�Ki + K2

�
−

�U∞D
3

n�
K2A∗

2
i

−
�U∞D

2

n�
K2A∗

3
.

(56)AD − CB = 0.
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where � is kinematic viscosity. In this case, M is set to be 
5 for the splitting scheme, � and α are set to be equal to 1 
and 0.85, respectively and Γref = U∞D for a merging 
scheme. The initial parameters for the simulation are listed 
in Table 1.

In this solver, the Reynolds number is the one of the 
primary input parameters for simulation. Small time step 
Δt reduces the number of merging events in the same time 

period of simulation. Accordingly, the error in merging 
events is spatially decreased within the simulation time. 
The number of panels determines the initial vorticity sur-
rounding the wall through the introduction of Nascent vor-
tex elements. This vorticity layer apparently represents the 
no-though boundary condition, which is the input for the 
no-slip boundary condition to resolve the boundary layer. 
The accuracy and the stability of the FLVM solver obvi-
ously depend on these initial conditions.

Table 1  Input parameters Re Δt(time step) Panels

550 0.01(s) 500

Fig. 6  Velocity distributions along the horizontal centerline and con-
tours of velocity streamline colored by magnitude of velocity vector 
at different times. Symbols denote present results and continuous lines 
denote experimental data [37]

Fig. 7  Strouhal number versus Reynolds number variation of flow 
around a circular cylinder

Table 2  Convergence study of spatial resolutions

Resolutions Coarse Medium Fine

Particle core size ( �p)
√

15
U∞D

Re
Δt

√
10

U∞D

Re
Δt

√
6
U∞D

Re
Δt

max|CD−CD,FINE|
max|CD,FINE|

7.5% 5.5%

Fig. 8  Vorticity contours and drag force coefficient of the impul-
sively started flow around a stationary circular cylinder at Re = 9500 . 
Dashed line is the result of Rasmussen et al. [50]. Dotted line is the 
present result at Δt = 2 ∗ 10−4 . Continuous line is the present result 
at Δt = 5 ∗ 10−4

Fig. 9  The case study I (flow past a pitching flat plate with the maxi-
mal pitching angles 90°, Re = 1000 ). Lift and drag coefficients from 
CFD by Kinsey and Dumas [52], LDVM by Ramesh et al. [53], and 
FLVM follows the scale of the left-hand axis. The right-hand axis 
shows the scale from 0° to 90° for pitching angles �(t∗)
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Figure 6 shows velocity distributions along the horizon-
tal centerline and contours of velocity streamline colored 
by magnitude of velocity vector at different times (
t∗ =

TU∞

D
= 1, 3, 5

)
 . Symbols denote present results and 

continuous lines denote experimental data [37]. The com-
puted centerline velocity in the recirculating flow region 
is in good agreement with those obtained by the experi-
ment data. The contours of velocity streamline illustrate 
quantitatively the development of a symmetrical wake 
behind the cylinder from the initial stage until the later 
stages of the simulation ( t∗ = 5).

As depicted by the figure, a pair of vortex bubbles stead-
ily developed into larger bubbles during simulation time. In 
the contour of velocity streamline, the separation point is 
found to be located around 60°, which agrees well with the 
numerical result of Kim [44] and the experimental result of 
Taneda [45].

Figure 7 illustrates the change of Strouhal number with 
the Re variation in the case of flows past a circular cylinder. 
The present results agree well with those given by Zhang 
et al. [46] and Barkley and Henderson [47]; however, they 
show slight differences with those provided by Williamson 
[48] and Thompson et al. [49].

Fig. 10  The case study I (flow 
past a pitching flat plate with 
the maximal pitching angles 
90°, Re = 1000 ). Flow features 
from CFD by Kinsey and 
Dumas [52] (left-hand column), 
LDVM by Ramesh et al. [53] 
(right-hand column), and FLVM 
(middle column)
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For the convergence study of spatial resolution shown 
in Table 2, the medium size particle core size provides suf-
ficient resolution to achieve spatial convergence, while the 
coarse core size produces the insufficient spatial resolution. 
For all cases that follow, the resolution used in this study is 
based on the medium resolution to reduce its computational 
cost and to resolve sufficiently the flowfield.

For the temporal convergence study, Fig. 8 shows vor-
ticity contours and drag force coefficient of the impul-
sively started flow around a stationary circular cylin-
der at Re = 9500 . Dashed line is the reference result by 
Rasmussen et al. [50]. Dotted line is the present result 
at Δt = 2 ∗ 10−4 . Continuous line is the present result at 
Δt = 5 ∗ 10−4 . As shown by the vorticity contours, the 
present result expresses the good agreement with the 
reference result in capturing the primary and secondary 
vortex structures generated from the cylinder boundary at 
t∗ = 3.8 . The qualitative results of drag coefficient obtained 
with different incremental times also show a small devia-
tion with the reference. In particular, the present results at 
smaller Δt approach the reference results better than those 
at larger Δt . Hence, these evidences prove that the current 
FLVM solver captures well the characteristics of the flow 
around a bluff body.

5  Two‑dimensional flapping wing models 
at high frequencies

In this section, flat plate with rectangular platform with the 
characteristic length D = 1 undergoing pitching maneuvers 
and NACA 0030 airfoil with the characteristic chord C = 1 
under heaving and pitching maneuvers in a characteristic 
velocity U∞ = 1 are considered to verify the validity of the 
FLVM solver for the simulation of flows past oscillating 
obstacles at high frequencies.

The pitching flat plate is investigated with two pitch-
ing reduced frequencies including K = 0.785(case I) and 
K = 0.3925 (case II). The heaving and pitching airfoil 
is carried out with two Reynolds numbers including 
Re = 240 (case III) and 480 (case IV). The Reynolds 
number is chosen to take into account issues of high 
frequency oscillating motions and to highlight the high 
resolution of large-scale wake structures generated by 
the unsteady motions of the obstacles. In the present 
simulations, the Re = 1000 is considered for the cases 
of pitching flat plates. The unsteady pitching maneuvers 
are defined by the function proposed by Eldredge [51]. 
The function defines a smoothed linear rate of change of 
AoA, which allows for a continuous motion and avoids 
discontinuity in angular acceleration.

In the Eq.  (57), a controls the smoothing of pitching 
acceleration. �0 is the maximum rotational angle in radians. 
The dimensionless quantities, t∗

1
 and t∗

2
= t∗

1
+ �0

D

(2U∞K)
 are 

start-up and end-up times of the unsmoothed motion, respec-
tively. In case I, �0, t∗1, and a are set to be �

2
, 1, and 5.2 

while in the case II those parameters are fixed as �
4
, 1, and 11

.
In the cases III and IV, the heaving and pitching motions 

of the NACA 0030 are defined as sinusoidal function for 
both translational ( h(t∗) = h0sin(2�ft

∗) ) and rotational 
( �(t∗) = �0cos(2�ft

∗ + �) ) modes. Two simulations are per-
formed with the same frequency f = KU∞

2�C
=

1

2�
 , α0 = 20°, 

and ϕ = 75°. The airfoil is heaved and pitched about one-
third chord length away from the leading edge.

Figure 9 depicts the present qualitative results of case 
study I. Lift and drag coefficients from CFD by Kinsey and 
Dumas [52], LDVM by Ramesh et al. [53], and FLVM fol-
lows the scale of the left-hand axis. The right-hand axis 
shows the scale from 0° to 90° for pitching angles �(t∗) . 
As shown by the figure, the lift and drag coefficients of the 
present results express slight deviation with the CFD results 
and LDVM results. In addition, the maximal peaks of Cd 

(57)

�(t∗) =
�0D

2aU∞

�
t∗
2
− t∗

1

� log
⎛
⎜⎜⎜⎝

cosh
�

aU∞(t∗−t∗1)
D

�

cosh
�

aU∞(t∗−t∗2)
D

�
⎞
⎟⎟⎟⎠
−

aU∞

�
t∗
1
− t∗

2

�
D

.

Fig. 11  The case study II (flow past a pitching flat plate with the 
maximal pitching angles 45°, Re = 1000 ). Lift and drag coefficients 
from CFD by Kinsey and Dumas [52], LDVM by Ramesh et al. [53], 
and FLVM follows the scale of the left-hand axis. The right-hand axis 
shows the scale from 0° to 50° for pitching angles �(t∗)
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and CL of the present results during the pitching motions are 
identical with references.

Figure 10 shows the quantitative comparison of the 
case study I with references listed in literature. Flow fea-
tures related to vorticity contours from CFD by Kinsey 
and Dumas [52] (left-hand column), LDVM by Ramesh 
et al. [53] (right-hand column), and present FLVM (mid-
dle column) are arranged in the figure. The formation and 
detachment of the leading edge vortex (LEV) are in a good 
agreement with the results obtained by references. Specifi-
cally, the LEV is captured with the identical position and 
size with those observed by reference solvers during the 
pitching motion. The presence of LEV correlates with the 
cause of enhanced lift coefficient obtained in the previous 

figure. Figure 11 depicts the case study II. Lift and drag 
coefficients from CFD by Kinsey and Dumas [52], LDVM 
by Ramesh et al. [53], and FLVM follows the scale of the 
left-hand axis. The right-hand axis shows the scale from 
00 to 500 for pitching angles �(t∗).

The present Cd and CL are identical with those computed 
by references. The peak of CL during the pitching maneuver 
shows slight difference with reference results while the peak 
of CD approaches well with the reference results. Figure 12 
describes the vorticity contours for the case study II. Flow 
features from CFD by Kinsey and Dumas [52] (left-hand 
column), LDVM by Ramesh et al. [53] (right-hand column), 
and FLVM (middle column) are presented. The formation 
and the detachment of the leading edge vortex and trailing 

Fig. 12  The case study II (flow 
past a pitching flat plate with 
the maximal pitching angles 
45°, Re = 1000 ). Flow features 
from CFD by Kinsey and 
Dumas [52] (left-hand column), 
LDVM by Ramesh et al. [53] 
(right-hand column), and FLVM 
(middle column)
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edge vortex (TEV) of the present results are observed to 
be identical with those obtained from references. The sizes 
and positions of the LEV and TEV of the present results 
are identical with LDVM results. Figures 13 and 14 show 
the case studies III and IV, respectively. The flow features 
of vorticity contours are shown at phases ( 0 , �

2
 , � , 3�

2
) from 

left- to right-hand figures, respectively.
The upper side row is the reference results from Yu et al. 

[54]. The lower side row is the present FLVM results. As 
described by these figures, the vortex bubbles shedding 
behind the NACA 0030 airfoil of the present results for dif-
ferent phases of oscillation are similar to those captured by 
the reference. The differences of thrust coefficients between 
current and reference results can be apparently seen in 
Fig. 15. The red-colored lines are the results from Yu et al. 
[54]. The blue-colored lines are the results from the present 
FLVM solver. It is fair to conclude that the FLVM solver 
can capture well large-scale vortex structures developed 
behind the bluff body under heaving and pitching motions 
with high-frequency oscillations.

6  Determination of flutter derivatives 
and flutter speed

The numerical experiments below follow the same meth-
odology described in the previous section. The flat plate is 
forced to prescribed oscillations and the computations are 
carried to go beyond several periods of oscillation. The fluid 
forces recorded on the last period to extract the correspond-
ing flutter derivatives. Then, the flutter speed of the oscillat-
ing flat plate is numerically determined.

6.1  Forced‑oscillating flat plate

To numerically calculate flutter derivatives of a flat plate, 
forced-translation and forced-rotation flat plate are simulated 
using initial conditions listed in Table 3.

The forced motions of the plate are defined as sinusoidal 
function for both translational ( h(t∗) = Ahcos(2�ft

∗) ) and 
rotational ( �(t∗) = A�cos(2�ft

∗) ) modes. The simulation is 
performed in a limited range of frequency of the vertical 
and rotational motions f = 0.1, 0.143, 0.25, 0.5, 1 . Using 
208 boundary elements, the flat plate is oscillated in heave 
and pitch about the half-chord ( x� = 0 ) with an amplitude 
Ah = 0.05 , and A� = 5o , respectively. The configuration of 
the simulation is depicted in Fig. 16.

Figure 17 depicts time history of aerodynamic lift and 
moment coefficients for flow past a flat plate in pitching 
motion at Re = U∞D∕� = 500, 1000, 3000 , where D is 
the characteristic length of the flat plate. The figure sug-
gests that the moment coefficients do not deviate from each 
other at three different Reynolds numbers. Otherwise, the 
lift coefficient shows a difference at the peak. The higher 
Reynolds numbers demonstrate a little higher peaks of lift 
coefficient. It is fair to say that the lift and moment coef-
ficients do not show a significant difference in the range of 
Reynolds numbers from 500 to 3000. Hence, the Reynolds 
number Re = 1000 is selected in the following simulations 
due to its independence to the evaluation of aerodynamic 
coefficients.

Figure  18 shows the time history of corresponding 
aerodynamic lift and moment coefficients for flow past a 
flat plate in pitching motion at Re = 1000 . U� = 1. Dashed 
lines are results from FLVM solver and the solid lines are 
modeled lift (red) and moment (blue) coefficients from 

Fig. 13  Case study III (vorticity contours for the NACA0030 airfoil with the heaving and pitching motion at Re = 240 ). From left- to right-hand 
vorticity contours at phases 0 ; �

2
 ; � ; 3�

2
 , respectively. The upper side row is the results from Yu et al. [54]. The lower side row is the FLVM results
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Eqs. (37) and (38). Figure 19 depicts the calculated flutter 
derivatives ( H∗

1
− H∗

4
 and A∗

1
− A∗

4
 ) versus reduced veloc-

ity ( U� = 0.1, 0.143, 0.25, 0.5, 1 ) for flow past a flat plate 
at Re = 1000 . The results of A∗

1
,A∗

2
,A∗

4
,H∗

1
,H∗

2
,H∗

4
 tend to 

deviate from the analytical solutions for higher reduced 
velocities due to the viscous effect resolved in the FLVM 
solver. In particular, the formation and detachment process 
of vortex structures is retarted due to viscosity and forced-
motions with high amplitude producing some deviation to 
the computation of the flutter derivatives. These damping 
coefficients are generally difficult to be predicted correctly 
while the stiffness coefficients (especially A∗

3
,H∗

3
 ) are, in 

general, in a good agreement with the Theodorsen’s solu-
tions [42]. In addition, it is important to remember that the 

analytical solution is obtained by imposing the linearity 
assumption.

By solving Eq. (56) with respect to K  using the com-
puted flutter derivatives, the evaluation of flutter speed is 
shown in the Fig. 20, which depicts the plot of imaginary 
part ( Ki ) of reduced frequency versus reduced velocity 
( U� ). The continuous line is interpolated using the least 
square method based on the dashed line data. From the 
plot, it is estimated that the value of Ki equals to zero 
when U� is approximately equal to 6(m/s) which is less 
than 4% of error compared to theoretical prediction of 
6.21(m/s), which is listed in [42]. The difference is due to 
the deviations of flutter derivatives ( A∗

1
,A∗

2
,A∗

4
,H∗

1
,H∗

2
,H∗

4
 ) 

with the inviscid theory, shown by the Fig. 19.

7  Conclusions

In the present study, the purely fast Lagrangian vortex method 
(FLVM) is developed to simulate the external incompressible 
flows past heaving and pitching bodies with high frequency 
oscillation. Due to the meshfree characteristics of the method, 
the vortical flows are freely tracked by local velocities and 
vorticities of particles introduced within the fluid domain. The 
Nascent vortex element is introduced to the flow field to retain 
the purely Lagrangian characteristics of the solver. The viscous 
effect is modeled using a core spreading method coupled with 
the splitting and merging spatial adaptation scheme to resolve 

Fig. 14  Case study IV (vorticity contours for the NACA0030 airfoil 
with the heaving and pitching motion at Re = 480 ). From left- to 
right- hand vorticity contours at phases 0 ; �

2
 ; � ; 3�

2
 , respectively. The 

upper side row is the results from Yu et al. [54]. The lower side row is 
the results from FLVM

Fig. 15  Time histories of the thrust coefficients for a series of heav-
ing and pitching NACA0030 airfoil at Re = 240 and 480 . The red-
colored lines are the results from Yu et  al. [54]. The blue-colored 
lines are the results from FLVM

Table 3  Input parameters of 
forced-oscillating flat plate

Re Δt Panels f
h

f� n
h

n� �(AoA) x�

1000 0.01 (s) 206 0.174 0.4 14.5 1.83 0 0
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the boundary layer induced by solid walls. The particle’s 
velocity is calculated using Biot–Savart formulation, which is 
accelerated by a fast multipole method (FMM).

The validity of the present algorithm is verified by temporal 
and spatial convergence studies for the case of flows past an 
impulsively started cylinder at the Reynolds numbers ranging 
from 50 to 9500. The drag coefficients and contours of veloc-
ity streamline are found to be in good agreement with those 
reported in literature.

The numerical algorithm of FLVM is then applied for the 
simulation of flows around the pitching flat plate with two 
pitching reduced frequencies K = 0.785 and 0.3925 . For the 

case of K = 0.785 , the present time history results of drag and 
lift coefficients are in a good agreement with the reference 
results. Due to the formation of leading edge vortex (LEV), 
the maximal peaks of Cd and CL of the present results during 
the pitching motions are also identical with those reported in 
references. For the case of K = 0.3925 , the peak of CL during 
the pitching maneuver shows slight difference with reference 
results while the peak of CD approaches well with the reference 
results. The formation and the detachment of the leading edge 
vortex (LEV) and trailing edge vortex (TEV) of the present 
results are observed to be identical with those obtained from 
references.

The solver is then extended to the simulation of flows 
past a heaving and pitching airfoil with high frequency of 
oscillation. The vortex bubbles shedding behind the NACA 
0030 airfoil of the present results for different phases of 
oscillation are similar to those captured by the reference. 
It is fair to conclude that the FLVM solver can capture 
well large-scale vortex structures developed behind the 
bluff body under heaving and pitching motions with high 
frequency oscillations.

The simulation scheme is then applied to compute the 
flutter derivatives and flutter speed of an oscillating flat plate 
at Re = 1000 . The results of A∗

1
,A∗

2
,A∗

4
,H∗

1
,H∗

2
,H∗

4
 tend to 

deviate from the analytical solutions for higher reduced 
velocities due to the viscous effect resolved in the FLVM 
solver; while the stiffness coefficients (especially A∗

3
,H∗

3
 ) are, 

in general, in a good agreement with the inviscid theory. In 
particular, the formation and detachment of vortex structures 
is retarted in viscous fluids producing some deviation to the 
computation of the flutter derivatives.

Fig. 16  Configuration of the forced-oscillating flat plate simulation

Fig. 17  Time history of aerodynamic lift and moment coefficients for 
flow past a flat plate in pitching motion at Re = 500, 1000, 3000

Fig. 18  Time history of aerodynamic lift and moment coefficients for 
flow past a flat plate in pitching motion at Re = 1000 . U� = 1. Dashed 
lines are results from FLVM solver and the solid lines are modeled 
lift (red) and moment (blue) coefficients
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