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Abstract Climate change is predicted to increase the

probability of soil waterlogging due to severe rainfall,

causing significant damage to soybean at the germi-

nation stage. Germination under waterlogging is also

greatly influenced by temperature. To clarify the

variation in germination responses of soybean geno-

types to waterlogging at different temperatures, the

seeds of 15 soybean genotypes were treated by

soaking for 2 days at four temperatures: 21 �C,
23 �C, 25 �C, 27 �C and 29 �C. Differences in the

germination rate (GR) and normal seedling rate (NSR)

were observed among soybean genotypes after soak-

ing treatments regardless of the temperature. Among

the examined genotypes, Iyodaizu was classified as

waterlogging tolerant at the germination stage, and

Tachinagaha was classified as sensitive. Interestingly,

through the analyses of recombinant inbred lines

(RILs) developed from a cross between Tachinagaha

and Iyodaizu, quantitative trait loci (QTLs) for root

development under hypoxia at the seedling stage of

soybean were detected on chromosome 12

(Chr.12).We investigated whether the candidate QTL

region for root development is involved in seed

waterlogging tolerance by using a near-isogenic line

(NIL), NIL-9-4-5. Interestingly, under soaking treat-

ment, the GR and NSR of NIL-9-4-5, carrying the

candidate QTL region, was nearly the same as that of

Iyodaizu and was significantly higher than that of

Tachinagaha. These results may indicate that the

candidate QTL region for root development under

hypoxia at the seedling stage located on Chr.12

contributes to the seed waterlogging tolerance of

soybean plants at the germination stage.
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NIL Near isogenic line

NSR Normal seedling rate

QTL Quantitative trait loci

Introduction

Climate change is regarded as a major factor increas-

ing the probability of soil waterlogging due to severe

rainfall. When soil is waterlogged, a hypoxic envi-

ronment is induced due to the low diffusion of gases in

water (Jackson and Colmer 2005; Licausi and Giuntoli

2020) and the respiration of organisms (Bailey-Serres

and Voesenek 2008). The low-oxygen atmosphere

negatively influences plant growth and productivity.

To cope with waterlogging-induced hypoxia, three

major strategies (adaptation, escape and quiescence)

have evolved in plants; for example, plants exhibit

certain root traits that prevent the loss of oxygen from

the roots, such as adventitious rooting, root aerench-

yma formation and the formation of physical barriers.

Great efforts have been made to understand the

effects of waterlogging conditions on the growth and

development of various upland crops, such as cucum-

ber (Cucumis sativus) (Yeboah et al. 2008) wheat

(Triticum aestivum) (Boru et al. 2001; Malik et al.

2001), chickpea (Cicer arietinum) (Cowie et al. 2013),

upland cotton (Gossypium hirsutum) (Wang et al.

2017) and maize (Zea mays) (Tian et al. 2019).

However, few of these studies have addressed the

central question of the hypoxia stress response in

soybean (Glycine max), a crop with poor tolerance to

waterlogging (Maekawa et al. 2011; Kim et al. 2015;

Dhungana et al. 2019).

Soybean is considered the most important legume

species to humans and is frequently cultivated from

spring to early summer in eastern Asia (Lee et al.

2003; Carpentieri-Pipolo et al. 2012). During this

period, an increasing occurrence of heavy rains has

been reported, causing significant damage to soybean

at the germination and seedling stages (Araki et al.

2012; Kokukun et al. 2013). Genetic variation in

germination responses to waterlogging was reported in

previous studies (Sung 1995; Sayama et al. 2009;

Nanjo et al. 2014), and this response can be greatly

affected by temperature (Hou and Thseng 1991;

Wuebker et al. 2001). Warmer temperatures are

associated with greater losses during seedling

emergence and a complete loss of germination was

observed in a typical soybean cultivar when seeds

were soaked for 4 days at 30 �C (Hou and Thseng

1991). Unfortunately, the variation in seed germina-

tion responses to waterlogging at different tempera-

tures remains unclear. However, effect of temperature

on the germination capacity of waterlogged seeds has

not been tested across soybean varieties.

Although extensive QTLs for waterlogging toler-

ance of soybean have been detected, most of these

QTLs are related to tolerance at the vegetative stage

(Van Toai et al. 2001; Reyna et al. 2003; Cornelious

et al. 2005; Githiri et al. 2006; Sayama et al. 2009;

Nguyen et al. 2012; Van Nguyen et al. 2017). Limited

information is available about QTLs for waterlogging

tolerance in soybean plant in the germination stage.

Only five QTLs, Sft1, Sft2, Sft3, Sft4 (Sayama et al.

2009) andQTN13 (Yuet al. 2019), have been associated

with germination and normal seedling rates under seed-

soaking stress. Interestingly, one of theseQTLs (Sft1) is

located in a marker interval containing QTLs on

chromosome 12, near a candidate QTL region for root

development under hypoxia and waterlogging (Van

Nguyen et al. 2017). To obtain a deeper understanding

of the effects of candidate QTL regions for root

development on waterlogging tolerance of soybean at

the germination stage, seeds of a near-isogenic line

(NIL) and their parents were used as the studymaterials

in this work.We comprehensively studied the effects of

waterlogging at various temperatures on the character-

istics of these soybean seeds, including the germination

rate and seedling rate. Our findings could provide a

valuable reference for alleviating waterlogging condi-

tions in soybean planted around the world.

Materials and methods

Materials

Fifteen soybean genotypes, including seven from

Japan (Iyodaizu, Kokubu 7, Komame, Maetsue Zarai

90B, Miyashishirome, Nattou Kotsubu and Tachina-

gaha), three from India (E C 112,828,M42 andM652),

two from Nepal (N 2295 and U1155-4), one from

Korea Rep. (Okjo), one from China (Peking) and one

from the United States (Williams 82), were used in this

study (Table 1). In addition, we used Iyodaizu,

Tachinagaha and NIL-9-4-5 to confirm the effects of
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a major QTL for root development under hypoxia on

seed waterlogging tolerance in soybean. Among them,

NIL-9-4-5 is reported as a near-isogenic line (NIL)

that was selected from the Tachinagaha/Iyodaizu

BC6F2 population through marker-assisted selection

(Van Nguyen et al. 2017).

Seed waterlogging treatment

Seeds of each genotype were incubated in Petri dishes

(diameter: nine cm) at 23 �C and 80% RH in the dark

and the number of germinating seeds was counted for

three days. Then, three-day-seeds were treated under

waterlogging condition at different temperatures: 21,

23, 25, 27 and 29 �C (Fig. 1). Briefly, control seeds

were sown in 0.43 l plastic pots (7.2 cm in top

diameter; 11.6 cm in height; and 5.1 cm in bottom

diameter) filled with humid vermiculite (Mi-

dorisangyou, Fukuoka, Japan) for four days, while

waterlogging-treated- seeds (10 per temperature treat-

ment per genotype) were subjected to a water soaking

treatment in an Erlenmeyer flask containing 120 ml of

deionized distilled water for 48 hours. The pots and

Erlenmeyer flasks were then placed on trays in growth

chambers (220 lmol m2 s-1 light density, 14 h light/

10 h dark) that were set at the target temperatures.

Then, the treated seeds were germinated in humid

vermiculite for two days as the recovery stage. The

experiments were performed under a randomized

complete block design with three replications per

treatment, and 10 seeds were used per replication.

Measurements

At the end of the seed waterlogging treatment, the

water surface in the Erlenmeyer flak was observed for

presence or absence of air bubbles. The samples were

collected after four days of treatment. Seeds with a

radicle longer than 1 cmwere recorded as germinating

seeds, and seedlings without any damage to the radicle

or cotyledon were regarded as normal seedlings. The

germination rate (GR) and normal seedling rate (NSR)

were calculated with the following formulas:

Germiation rateð%Þ ¼ Number of germinated seeds

Number of sowed seeds
� 100

Normal seedling rateð%Þ ¼Number of normal seedlings

Number of sowed seeds

� 100

The relative GR and NSR values at the tested

temperatures were calculated as the ratio of the mean

value under the control treatment to the mean one

under waterlogging.

Table 1 Characteristics of

the studied genotypes
Genotype Origin Code at source Seed weight (g/seed) Seed colour

E C 112,828 India GW80 0.1931 Yellow

Iyodaizu Japan Iyo 0.1314 Green

Kokubu 7 Japan GJ66 0.3332 Yellow

Komame Japan GJ32 0.4227 Yellow

M42 India GJ53 0.1824 Yellow

M652 India GJ67 0.0688 Black

Maetsue Zarai 90B Japan GJ58 0.4997 Yellow

Miyagishirome Japan GJ14 0.5141 Yellow

N 2295 Nepal GW41 0.1973 Brown

Nattou Kotsubu Japan GJ13 0.1606 Yellow

Okjo Rep. Korea GW18 0.2823 Yellow

Peking China GW28 0.1034 Black

Tachinagaha Japan Tachi 0.3612 Yellow

U 1155-4 Nepal 1155-4 0.0624 Black

Williams 82 America GW36 0.2591 Yellow
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Statistical analysis

All statistical analyses were performed with Unistat

6.5. The effect of the genotype on the results for each

trait was assessed by two-way ANOVA.

Results

Effects of seed waterlogging stress on GR

and NSR

No effects of genotype, temperature or their interac-

tions on GR or NSR were detected under control

conditions, while these effects were significant for

both variables under waterlogging treatment

(Table 2). Compared to the control, the mean GR

under waterlogging stress was reduced from 4% at

21 �C, to 68% at 29 �C. The mean NSR was reduced

from 18% at 21 �C, to 82% at 29 �C (Table 2).

Variation in seed germination responses

to waterlogging stress at different temperatures

The appearance of air bubbles at the water surface in

Erlenmeyer flasks showed an increase with increasing

temperatures (Figs. 2 and 3). Significant genetic

variations in NR and NSR responses to temperature

under seed waterlogging were found (Figs. 4 and 5).

At 21 �C, the GR of the soybean genotypes varied

from 73% (Okjo and M42) to 100% (10/15 varieties),

Fig. 1 Experimental schedule and seed-waterlogging treatments

Table 2 ANOVA and relative values of germination rate and normal seedling rate under control and waterloggingconditions at

different temperatures

Traits Mean at F-Value

21oC 23oC 25oC 27oC 29oC Genotype (G) Temperature (T) G x T

Control (a)

Germination rate (%) 98 95 95 95 97 1.54Ns 1.14Ns 1.01Ns

Normal seedling rate (%) 96 94 94 95 96 1.15Ns 1.39Ns 1.37Ns

Seed-waterlogging (b)

Germination rate (%) 94 80 69 47 31 8.65* 43.75* 66.78*

Normal seedling rate (%) 79 65 48 25 17 11.60* 34.85 * 94.77 *

Relative value (b/a)

Germination rate 0.96 0.84 0.72 0.50 0.32

Normal seedling rate 0.82 0.68 0.50 0.26 0.18

**Significant and (Ns): Not significant at P\ 0.05
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and the NSR varied from 37% (Williams 82) to 100%

(U 1155-4, Iyodaizu and N 2295). At 23 �C, the GR of

the soybean genotypes varied from 50% (Tachina-

gaha) to 100% (U 1155-4 and Iyodaizu), and the NSR

varied from 0% (Williams 82) to 100% (U 1155-4). At

25 �C, the GR of the soybean genotypes varied from

33% (Tachinagaha) to 100% (U 1155-4), and the NSR

varied from 0% (Williams 82 and Miyagishirome) to

90% (U 1155-4). At 27 �C, the GR of the soybean

genotypes varied from 13% (Maetsue Zarai 90B and N

2295) to 90% (U 1155-4), and the NSR varied from

0% (8/15 genotypes including Williams 82,

Miyagishirome, Nattou Kotsubu, Komame, Okjo,

M42, Kokubu, Maetsue Zarai 90B and N 2295) to

87% (U 1155-4). At 29 �C, the GR and NSR showed

clear differences among the genotypes. Only five of

the 15 genotypes, including U 1155-4, M 652, E C

112,828, Yodaizu, and Peking showed to have the

NSR at 29 �C. Based on the GR, the genotypes were

categorized into three groups, including a tolerant

(Peking, U 1155-4, Iyodaizu andM 652), a moderately

tolerant (E C 112,828, Komame, and Nattou Koshubu)

and a sensitive group (others), regardless of the

temperature (Figs. 4 and 5).
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Fig. 3 Air bubble formation after 2 days-waterlogging treatment in Erlenmeyer flasks and germination performance after 2 days

recovery of GJ 67 (M652) and GJ 58 (Maetsue Zarai 90B) at different temperatures
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The seed waterlogging tolerance of soybean is

linked to QTLs for root development

under hypoxia

Under the control treatment, NSR of Iyodaizu, Tachi-

nagaha and NIL-9-4-5 were all higher than 90% and

were not significantly different among genotypes and

across all temperature conditions (Fig. 6, Supplemen-

tary Fig. S2).Under waterlogging, we found a signif-

icant reduction in GR and NSR of the 3 genotypes

associated with increasing temperatures from 21 to

29 �C (Figs. 7 and 8, and Supplementary Fig. 3).

Among genotypes, Tachinagaha was found to be a

waterlogging-sensitive genotype, showing rapid

reductions in GR and NSR, while Iyodaizu and NIL-

9-4-5 were waterlogging-tolerant compared to con-

trols. GR and NSR of Iyodaizu and NIL-9-4-5 were

also significantly greater than those of the recurrent

parent Tachinagaha at all temperatures (Figs. 7 and 8,

and Supplementary Fig. S3).
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Discussion

Recently reports have described the relationship

between waterlogging condition and temperature

variation. Here, we confirmed a QTL region for root

development under hypoxia significantly contributes

to the seed waterlogging tolerance of soybean plants at

the germination stage. Hypoxia has been proposed as

the main problem associated with waterlogging

because the available oxygen concentration is rapidly

decreased due to the slow diffusion of oxygen in water

(Armstrong 1980; Wiengweera et al. 1997; Hossain

and Uddin 2011). Reduction of oxygen partial pres-

sures to 2 kPa and 6 kPa, decreased GR to 0% and

50% respectively, compared to the maximum GR

under ambient conditions (Al-Ani et al. 1985; Tian

and Arihara 1998) conducted the experiments on the

effects of O2 supplies on GR of 8 soybean genotypes

and reported that GR was decreased by 25–75% at 5%

O2 compared to 20% O2. In this study, the GR of

soybean under soaking was rapidly decreased by 4% at

21 �C to 68% at 29 �C (Table 2). These results

indicated that hypoxia stress causes a decrease in the

GR of soybean under waterlogging.

In this study, the interaction between the waterlog-

ging treatment and temperature was consistent with

results of other studies obtained under soaking or soil

waterlogging conditions. Previous study has indicated
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that warmer soil temperatures are related to greater

losses in seedling emergence under waterlogging

compared with lower temperatures (Fausey and

McDonald 1985). Under soaking conditions, incubat-

ing soybean seeds at 10 or 15 �C for up to 8 days prior

to germination caused no loss in germination, but

germination decreased as the length of the soaking

period at 25 and 30 �Cwas increased (Hou and Thseng

1991). The data obtained in this study showed that the

GR was reduced by only 6% at 21 �C but was

decreased by up to 68% at 29 �C (Table 2).

Variation was found among the genotypes included

in this study (Figs. 3 and 4). Williams 82 and

Tachinagaha showed waterlogging-sensitive geno-

types exhibiting rapid reductions in GR and NSR

regardless of increasing temperatures. Peking, U

1155-4, Iyodaizu and M 652 were better adapted to

waterlogging than the other genotypes. Among these

genotypes, Peking has been reported as a seed

waterlogging-tolerant genotype exhibiting a delay in

germination under hypoxia regardless of temperature

(Nakajima et al. 2015). Iyodaizu was selected as a

tolerant Japanese variety at 25 �C (Nanjo et al.

2014).The genotypes showing seed waterlogging tol-

erance might be useful for the genetic improvement of

waterlogging tolerance in modern soybean varieties.

In this study, Iyodaizu was classified in the water-

logging-tolerant group at the germination stage, and

Tachinagaha was classified in the sensitive group. In

linewith our observations, Iyodaizu has beenpreviously

reported as a genotype that is tolerant towaterlogging at

the germination (Nanjo et al. 2014) and seedling stage

(Sakazono et al. 2014; Jitsuyama 2015; Suematsu et al.

2017; Van Nguyen et al. 2017), and Tachinagaha has

been reported as a moderately sensitive genotype at the

germination (Sayama et al. 2009; Nanjo et al. 2014) and

seedling stage (Sakazono et al. 2014; Jitsuyama 2015;

Suematsu et al. 2017; Van Nguyen et al. 2017). These

results provide interesting information for exploring the

mechanisms involved in the development of adaptations

in response to waterlogging in the germination stage.

Through the analyses of inbred lines (RILs) developed

from a cross between Tachinagaha and Iyodaizu, Van

Nguyen et al. (2017) identified QTLs for root develop-

ment, including root length development (RLD) and

root surface area development (RSAD), on soybean

chromosome 12 and developed an NIL-9-4-5 carrying

targetedQTLs at BC6F2. TheQTLs for RLD andRSAD

(Qrld-12, Qrsad-12) on Chr.12 have been shown to be

stable across years. The resultant increase in root

development in NIL-9-4-5 was most likely inherited

from the waterlogging-tolerant parent Iyodaizu. Inter-

estingly, Sayama et al. (2009) also identified a QTL

(Sft1) for seed flooding tolerance in soybean, which is

located near the candidateQTL regionmentioned in this

study. Therefore, this study was conducted to confirm

the existence of QTL effects on seed waterlogging

tolerance related to root development under hypoxia

using NIL-9-4-5 line. The obtained results suggested

that the normal seedling rate of NIL-9-4-5 presented the

same trend as that of the donor parent Iyodaizu and was

significantly greater than that of the recurrent parent
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Tachinagaha, indicating that the marker interval may

contain a gene for seed waterlogging tolerance in

soybean (Figs. 7 and 8). These results agreedwith those

of Van Nguyen et al. (2017) showing that QTLs for

hypoxia tolerance in soybean at the germination and

seedling stages are located in the marker interval on

chromosome 12.

The important pathway induced under hypoxia is

ethanolic fermentation (Liem et al. 2019). By which

under the action of pyruvate decarboxylase and

alcohol dehydrogenase, carbohydrates convert to

alcohol and CO2 gas (Zabalza et al. 2009). In this

study, the formation of gas bubbles indicated that

fermentation occurred under seed waterlogging treat-

ment (Figs. 1 and 2). Under waterlogging, the appear-

ance of air bubbles was observed in Erlenmeyer flasks

containing the seeds of Iyodaizu and NIL-9-4-5 at

29 �C and those of Tachinagaha at 23 �C (Supple-

mentary Fig. S1). The mechanisms involved in the

hypoxia tolerance of soybean are related to the

patterns of alanine aminotransferase (AlaAT), alde-

hyde dehydrogenase (ALDH) as previously described

(Liem et al. 2019). More specifically, AlaAT plays an

important role in regulating the glycolytic flux by

preventing the excessive accumulation of pyruvate

(Zabalza et al. 2009) while retaining carbon and

nitrogen resources within the cell (Rocha et al. 2010).

Unlike the production of lactate and ethanol, alanine

accumulation does not have detrimental side effects in

cells. Another analysis of expression identified alde-

hyde dehydrogenase, a fermentative enzyme respon-

sible for the metabolization of aldehyde, which is

harmful to cells under hypoxia stress (Nakazono et al.

2000; Fukao et al. 2003; Tsuji et al. 2003). These

results suggest that by analysing the expression of

genes related to fermentation linked to the seed

waterlogging tolerance of soybean evaluated in this

study, a more mechanistic understanding of the

response to waterlogging stress will be achieved.
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