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This paper presents a framework for verifying evolving component-based software using 
assume-guarantee logic. The goal is to improve CDNF-based assumption generation method 
by having local weakest assumptions that can be used more effectively when verifying 
component-based software in the context of software evolution. For this purpose, we 
improve the technique for responding to membership queries when generating candidate 
assumptions. This technique is then integrated into a proposed backtracking algorithm to 
generate local weakest assumptions. These assumptions are effectively used in rechecking 
the evolving software by reducing time required for assumption regeneration within the 
proposed framework. The proposed framework can be applied to verify software that 
is continually evolving. An implemented tool and experimental results are presented to 
demonstrate the effectiveness and usefulness of the framework.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In the last three decades, component-based software engineering (CBSE) has emerged as one of the important approaches 
in software engineering. This approach has shown a number of advantages such as increasing effectiveness and efficiency, 
lowering cost, shortening product time-to-market, improving maintainability [52]. As a result, component-based software 
(CBS) quality assurance plays a critical role in software production life cycles due to the increasing demand for high-quality 
products. Due to the high-quality standard test procedure in software industry, the verification process in CBSs ensures that 
certain properties are not violated at all times.

There are two approaches to the verification of modern software: theorem proving which is semi-automatic, requires the 
interaction of domain experts [21,20,30,37,38,51], and costs a lot of effort [5]; model checking which is automatic and does 
not require the interaction of domain experts [7,18]. Although the model checking has gained considerable attention due to 
its fully automatic characteristic, the approach suffers from the problem of state space explosion [15,18,48,16]. The assume-
guarantee framework [17,19,24,46], which performs modular verification of CBS, has been considered a promising solution 
for dealing with the state space explosion problem during model checking. The framework uses the “divide-and-conquer” 
strategy to verify whether a given system satisfies a predefined property. Therefore, it can potentially be applied to large-
scale systems in practice. The key problem of the framework is to generate assumptions that satisfy the assume-guarantee 
rules [19,29,33]. If such an assumption exists, the given system satisfies the required property. Although the framework 
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can be applied to large-scale systems effectively, it does not consider the system under check in the context of software 
evolution.

Modern software applications are continually evolving, and any verification has to be revisited repeatedly. A reduction 
in the cost of this repeated verification would offer significant benefits for industry: improving the quality of software 
through application of verification techniques in situations where this is currently infeasible. Progress has been made using 
approaches such as labeled transition systems [12,19,31,33–35], implicit representation of transition systems [13,27], timed 
transition systems [3,28,40–42]. The following two solutions have been used in reducing the verification costs for evolving 
software.

The first solution is to generate a new assumption each time software evolves at a lower cost. For software modeled 
by exploiting labeled transition systems, assumptions with small sizes (i.e., assumptions with small numbers of states) can 
be used effectively to recheck modified software leading to reduced verification cost. In a series of papers, Hung et al. 
proposed a method to generate minimized assumptions for CBS verification [31,34,35] and a framework to perform modular 
verification of evolving CBS [33]. However, the cost for generating minimal assumptions can be high [34]. The reason is 
that the investigated assumption generation problem [19,33–35,31] is formulated as an automata learning problem using 
the L∗ algorithm [4]. As a result, it is difficult to apply this approach to large-scale systems. On the other hand, for the 
faster assumption generation speed, another verification method, which uses CDNF (Conjunction of Disjunctive Normal 
Form) algorithm [10] and implicit representation of software, was proposed in 2010 by Chen et al. [13]. Later, in 2016, this 
method was improved by He et al. and applied in CBS regression verification [26] by introducing a fine–grained learning 
technique. However, with modified software, some of the subpredicates of the new version of components can be different, 
which requires the regression verification progress to regenerate the assumptions for every small change in the software 
component.

The second solution to reduce the verification cost for modified software is to increase assumption reuse as much 
as possible. This is because the software development cycle involves daily change. Therefore, the less time required to 
regenerate assumptions, the greater the cost savings when verifying modified software. Moreover, from the analysis in 
Section 5 below, weak assumptions (i.e., assumptions with large languages) can help to achieve this purpose and play a 
key role in the verification of modified software. On the other hand, to our knowledge, no research has been conducted 
on generating assumptions that have the weakest languages and use implicit specification. As a result, this research focuses 
on improving the learning algorithm proposed by Chen [13] to generate local weakest assumptions that can be used more 
efficiently to reduce the cost of software regression verification during software evolution.

To achieve the above goal, we first improve the technique to answer membership queries for the two ι (i.e., the initial 
predicate) and τ (i.e., transition relation) CDNF learning instances. Based on this improved answering technique, we can 
generate weaker assumptions than those generated by the algorithm proposed by Chen et al. [13] (hereafter, we refer to 
as CBAG algorithm) using a proposed backtracking learning algorithm (referred to as LWAG algorithm). This leads to an 
important result in the context of software evolution: LWAG algorithm can reduce the number of times assumptions must 
be regenerated when verifying modified software. The improved answering technique and LWAG algorithm are integrated 
into a framework to effectively reduce the number of times assumption regeneration is required for evolving software.

Using assumption generation algorithms which employ the implicit representation, we can not only benefit from the fast 
learning process but we can also obtain several advantages of implicit software representation over explicit representation. 
First, the contextual assumptions represented implicitly using Boolean functions have fewer states than do assumptions 
modeled using deterministic finite automata because implicit representations are equivalent to nondeterministic finite au-
tomata, which are exponentially more succinct than deterministic ones. As a result, our generated assumptions can have an 
exponentially smaller number of states than do assumptions generated from explicit representations. The second advantage 
is the scalability of the verification method using implicit representations, which occurs because the L∗ algorithm requires a 
polynomial number of queries in the number of states of the target finite automaton [4,49]. In contrast, the CDNF algorithm 
requires a polynomial number of queries in the number of Boolean variables of the target Boolean function [10]. Because 
implicit assumptions can be exponentially more succinct than explicit ones, the learning algorithms for implicit assumptions 
can be exponentially better than automata-theoretic ones.

To our knowledge, the first paper that proposed using the L∗ algorithm to learn assumptions for the assume-guarantee 
reasoning algorithm was Cobleigh et al. [19]. Following this paper, several studies improved the method, including adoption 
of the assume-guarantee rules [6,26,39,45], symbolic implementation for assume-guarantee rules [8,9,45], several improve-
ments proposed in [1,2,12,14,25,50,53], and an extension to support liveness properties [22]. However, these papers all use 
the L∗ algorithm to learn an automaton as the required contextual assumption. Hence, they all have the same disadvan-
tages as described above compared to the algorithm proposed in Chen’s paper [13]. Hence, we based our paper on Chen’s 
algorithm [13] to verify modified software.

The remainder of this paper is organized as follows. Section 2 presents the background for this paper. We review CBAG 
algorithm for generating assumptions using the CDNF algorithm in Section 3, followed by the proposed algorithms to im-
prove the answers to membership queries and generate assumptions in Section 4. Section 5 presents a framework for 
verifying modified CBSs using assumptions generated by the proposed learning algorithm. Section 6 shows the preliminary 
experimental results. Related papers are presented in Section 7. Finally, we conclude the paper in Section 8.
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Table 1
Valuation functions for trace example.

Valuation x1 x2 x3 x4

v0 F F - -
v1 F T F T
v2 T F T F

2. Background

In this section, we present some basic concepts used in this paper. We use B to denote the Boolean domain, which is 
a set that consists of exactly two elements whose interpretations are T (true) and F (false) (i.e., B = {T , F }). Given a set of 
Boolean variables X, we call |X| the size of X, where |X| is the number of variables inside X.

Let X be a finite set of Boolean variables. Consider a function θ(X) over X, which is a function from B|X| to the Boolean 
domain B, θ(X) is called a Boolean f unction. Let v : X → B be a function over X that maps each x ∈ X to one value in B. 
We call v a valuation of X. The result of evaluating φ by replacing each x ∈ X with v(x) is denoted by φ[v]. We use “|”, “∧”, 
and “¬” to denote the logical O R , AN D , and N O T operators, respectively. Let consider an example where φ(X) = ¬x1 ∧¬x2, 
in which X = {x1, x2}. If v is a valuation where v(x1) = T and v(x2) = T , then φ[v] = ¬T ∧ ¬T = F ∧ F = F .

Consider a set of Boolean variables Y ⊆ X, we call v �Y the restriction of v on Y. That is, v �Y: Y →B and v �Y (y) = v(y)

for every y ∈ Y. As a result, for a finite sequence of valuations α = v0 v1... vt over X and Y ⊆ X, we call α �Y= v0 �Y v1 �Y
... vt �Y the restriction of α on Y. For the above example where X = {x1, x2}, if v is a valuation where v(x1) = T , v(x2) = T
and Y = {x2}, then v �Y (x2) = v(x2) = T .

Definition 1 (Transition system). A transition system M is a 3-tuple 〈X, ι(X), τ (X,X′)〉, where X is a finite set of Boolean 
variables, ι(X) is a Boolean function (called the initial predicate) and τ (X,X′) is also a Boolean function (called a 
transition relation). X′ is described as follows.

Let X be a finite set of Boolean variables. The next state of X is also a finite set of Boolean variables X′ = {x′ : x ∈ X}.
Let ψ(X, X′) be a Boolean function over X and X′ and v and v ′ be two valuations over X. The result of evaluating ψ

by replacing each x ∈ X with v(x) and each x′ ∈ X′ with v ′(x) is denoted by ψ[v, v ′]). Consider the case where ψ(X, X′) =
¬x1 ∧ x2 ∧ x3 ∧¬x4, X = {x1, x2} and X′ = {x3, x4}. If v and v ′ are the two valuations where v(x1) = T , v(x2) = F , v ′(x3) = T , 
and v ′(x4) = T , then ψ[v, v ′] = ¬T ∧ F ∧ T ∧ ¬T = F ∧ F ∧ T ∧ F = F .

A finite sequence of valuations α = v0 v1...vt is called a trace of M if and only if vi is a valuation over X such that ι[v0]
= T and τ [vi, vi+1] = T for 0 ≤ i < t . The number of valuations in α is called the length of α, denoted by |α|. The set of all 
traces of M is called the language of M and denoted by L(M).

Consider a transition system M = 〈X, ι(X), τ (X, X′)〉, where X = {x1, x2}, X′ = {x3, x4}, ι = (¬x1 ∧ ¬x2), τ = (¬x1 ∧ ¬x2 ∧
¬x3 ∧ x4)|(¬x1 ∧ x2 ∧ x3 ∧ ¬x4). Consider a trace v = v0 v1 v2, where v0, v1, and v2 are defined in Table 1. Using these 
valuation functions, we can see that the trace v = v0 v1 v2 is a trace of M because ι[v0] = ¬F ∧¬F = T ∧ T = T ; τ [v0, v1] =
(¬F ∧ ¬F ∧ ¬F ∧ T )|(¬F ∧ F ∧ F ∧ ¬T ) = T ; and τ [v1, v2] = (¬F ∧ ¬T ∧ ¬T ∧ F )|(¬F ∧ T ∧ T ∧ ¬F ) = T .

Definition 2 (Satisfiability). Consider a transition system M = 〈X, ι(X), τ (X,X′)〉 and a state predicate π(X), which is a 
Boolean function over X. We say that M satisf ies π (denoted by M � π ) if and only if ∀α = v0 v1...vt ∈ L(M), we have 
π [vi] = T for 0 ≤ i ≤ t .

Consider the example system M mentioned in Definition 1 when the state predicate is defined as follows: π(X) = (¬x1 ∧
¬x2)|(¬x1 ∧ x2)|(x1 ∧ ¬x2). We can see that ∀v0 : ι[v0] = T , we have π [v0] = T . In addition, ∀vi, vi+1 : τ [vi, vi+1] = T , and 
we also have π [vi] = T and π [vi+1] = T . Therefore, we have M |= π .

Let M be a transition system and π be a state predicate, the problem of deciding whether M satisfies π is called the 
invariant checking problem. The technique for solving the invariant checking problem automatically is called a model check. 
When performing a model check for M � π , a model checking algorithm returns a witness if M does not satisfy π . A trace 
v0 v1...vt of M is called a witness to M � π if and only if π [vi] = T for 0 ≤ i < t but π [vt ] = F .

Definition 3 (Simulation). Let N = 〈X, ιN (X), τN (X, X′)〉 be a transition system. We say that N simulates M or M is simulated
by N (denoted by M � N) if ∀X.ιM(X) ⇒ ιN (X) and ∀XX′.τM(X,X′) ⇒ τN (X,X′).

Intuitively, if the initial condition of M is more restrictive than that of N and all transitions allowed in M are also 
allowed in N , then N simulates M . Formally, if M ≺ N , then L(M) ⊂ L(N). In this case, we say that M is stronger than N or 
N is weaker than M .

Composition is one of the key operations during the assume-guarantee verification process of a CBS. It describes the 
behavior of a CBS from its sub-components.
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Definition 4 (Composition). Let Mi = 〈Xi, ιi(Xi), τi(Xi, X′
i)〉 be a transition system over a set of Boolean variables Xi for i = 0,1. 

The composition of M0 and M1 is the transition system M0||M1 = 〈X0 ∪ X1, ι0(X0) ∧ ι1(X1), τ0(X0, X′
0) ∧ τ1(X1,X′

1)〉.

For any finite sequence of valuations α over X0 ∪ X1, α ∈ L(M0||M1) if and only if α �X0∈ L(M0) and α �X1∈ L(M1). Let 
consider the following example of the composition operation. In this paper’s examples, we use j to denote x j , − j to denote 
¬x j , 0 to denote the Boolean value F , and 1 to denote the Boolean value T . Let M = M0 ‖ M1 be a CBS, where M0 and M1
are defined as follows:
XM0 = {1, 2},
X′

M0
= {3, 4},

ιM0 = (−1 ∧ −2),
τM0 = (−1 ∧ −2 ∧ −3 ∧ 4)|(−1 ∧ 2 ∧ 3 ∧ −4), and
XM1 = {5, 6},
X′

M1
= {7, 8},

ιM1 = (−5 ∧ −6),
τM1 = (−5 ∧ −6 ∧ −7 ∧ 8)|(−5 ∧ 6 ∧ 7 ∧ −8)

From Definition 4, we have M defined as follows:
XM = {1, 2, 5, 6},
X′

M = {3, 4, 7, 8},
ιM = (−1 ∧ −2) ∧ (−5 ∧ −6), and
τM = ((−1 ∧ −2 ∧ −3 ∧ 4)|(−1 ∧ 2 ∧ 3 ∧ −4)) ∧ ((−5 ∧ −6 ∧ −7 ∧ 8)|(−5 ∧ 6 ∧ 7 ∧ −8))

Definition 5 (Noncircular Assume-guarantee rule [13]). Let Mi = 〈Xi, ιi(Xi), τ (Xi, X′
i)〉 be a transition system for i = 0,1 and π

be a state predicate over X0 ∪ X1. The following formula is called the assume-guarantee rule.

M0||A � π M1 � A

M0||M1 � π

where A = 〈X1, ιA(X1), τA(X1, X′
1)〉 is a transition system, M0||A � π and M1 � A are its premises, and M0||M1 � π is its 

conclusion. The assume-guarantee rule is sound and invertible. That means its conclusion holds if and only if its premises 
are fulfilled.

Definition 6 (Assumption). Let Mi = 〈Xi, ιi(Xi), τi(Xi, X′
i)〉 be a transition system for i = 0,1 and π be a state predicate over 

X0 ∪ X1. Let A be a transition system in which A = 〈X1, ιA(X1), τA(X1, X′
1)〉. If M0||A � π and M1 � A, then A is called the 

contextual assumption of M0. We will hereafter call A the assumption.

Definition 7 (Weakest assumption). Among all assumptions that satisfy Definition 6, the assumption AW is called the 
weakest assumption if and only if ∀A : L(A) ⊆ L(AW ).

To the best of our knowledge, there has not been any algorithm which can generate the weakest assumption. For a given 
CBS M = M0 ‖ M1 and a predefined property π , it could be verified that if a given trace σ belongs to L(AW ) by using a 
membership query (shown in Section 3.2.1). AW is known as an assumption whose language is the set of traces that the 
corresponding membership queries results are yes.

Remark 1. Let A be a subset of assumptions that satisfy Definition 6. We call ALW ∈ A the local weakest assumption in A
if and only if ∀A ∈ A : L(A) ⊆ L(ALW ).

3. The CDNF–based assumption generation method

3.1. The CDNF algorithm

Let X be a fixed set of Boolean variables and λ(X) be a Boolean function over X. CDNF is an incremental learning 
algorithm that can learn the exact representation of λ(X) in a finite number of steps [10]. Sharing the same ideas as the L∗
algorithm [4], CDNF is based on a teacher (which knows λ(X)) when performing the learning process. The teacher must be 
able to answer the following two types of queries:

• Membership queries M E M(v): Given a valuation v over X, if λ[v] = T (true), the teacher returns yes to the learner. 
Otherwise, it returns no.

• Equivalence queries E Q (h): Given a candidate Boolean function h over X, if the candidate h is equivalent to the target 
function λ, the teacher returns yes. Otherwise, the teacher returns a valuation of v over X such that h[v] �= λ[v]. The 
valuation v serves as a counterexample to the equivalence query.
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Consider an example where λ(x, y) = (¬x ∧¬y) ∨(x ∧¬y) is the target Boolean function over x and y. The teacher returns 
no to the membership query M E M(v), where v(x) = F , and v(y) = T (denoted by v(xy) = F T ) because λ(F T ) = F . With 
another valuation v(xy) = F F , the teacher answers yes. Later, the learner generates a candidate h((x, y)) = ¬x ∧ ¬y and 
sends an equivalence query E Q (h) to the teacher for the candidate h(x,y) = ¬x ∧ ¬y. The teacher provides the valuation 
v(xy) = T F as a counterexample to the leaner because h[v] = F �= T = λ[v]. Based on this counterexample, the learner
generates another candidate h′(x,y) = (¬x ∧¬y) ∨ (x ∧¬y) and then sends a new equivalence query E Q (h′) to the teacher. 
This time, the teacher returns yes to the learner and the learning process stops.

Consider a Boolean function of λ(X) over X. Let |λ(X)|DN F and |λ(X)|C N F be the corresponding size of λ(X) in the minimal
disjunctive and conjunctive normal forms, respectively. The CDNF algorithm can learn representations of any target Boolean 
function in a polynomial number of queries in |λ(X)|DN F , |λ(X)|C N F , and |X| [10].

3.2. The CDNF–based assumption generation algorithm

This section presents the CDNF–Based assumption generation algorithm [13], referred to as CBAG algorithm. Based on 
this algorithm, the LWAG algorithm is presented in Section 4. We start with some core algorithms that will be integrated in 
CBAG algorithm to generate assumptions [13]. These algorithms are membership query answering algorithm (Algorithm 1
- OMQ algorithm), equivalence query answering algorithm (Algorithm 2 - EQ algorithm), and an algorithm that checks 
whether a counterexample α can be used to learn a better candidate assumption or if α is a real counterexample to the 
fact that M0 ‖ M1 �|= π (Algorithm 3 - IW algorithm). The correctness of these algorithms was proved by Chen et al. [13].

3.2.1. The original membership query answering algorithm
This section presents the OMQ algorithm to resolve the membership queries for both the C DN F ι and C DN Fτ learning 

instances [13]. The pseudo code for the algorithm is shown in Algorithm 1, where the input is a type parameter (which 
can be either ι or τ ) and a valuation v (which can be either one valuation μ or a pair of valuations (μ, μ′) respectively) 
as input. When the type = ι, then OMQ algorithm will check whether θ1 = ι1(μ) = T (line 1); otherwise, it checks whether 

Algorithm 1 (OMQ algorithm) IsMember(type, v).
Input: (ι, μ): a membership query for the target ιA(X); or (τ , (μ, μ′)): a membership query for the target τA(X1, X1

′)
Output: yes or no

1: if θ1(v) = T then � When type is ι, θ1 is ι1; when type is τ , θ1 is τ1

2: return yes
3: else
4: return no
5: end if

θ1 = τ1(μ, μ′) = T (line 1). When θ1(v) = T , OMQ algorithm returns yes to the learner; otherwise, it returns no.

3.2.2. The original equivalence query answering algorithm
When both C DN F instances implemented in the learner have their own candidate functions ι and τ , the learner

will send an equivalence query to the teacher. The EQ algorithm presented in Algorithm 2 is implemented in the 
teacher to answer the equivalence query from the learner. EQ algorithm starts by constructing the candidate assump-

Algorithm 2 (EQ algorithm) IsEquivalent(ι, τ ).
Input: E Q (ι): an equivalence query for the target ιA(X1); E Q (τ ): an equivalence query for the target τA(X1, X′

1);
Output: yes, or continue and a counterexample to E Q (ι), or continue and a counterexample to E Q (τ )

1: Let C be the transition system (X1, ι1(X1), τ1(X1, X′
1));

2: if ι1(X1) ∧ ¬ι(X1) is satisfied by μ then
3: Answer E Q (ι) with the counterexample μ;
4: return continue;
5: end if
6: if τ1(X1, X′

1) ∧ ¬τ (X1,X′
1) is satisfied by μμ′ then

7: Answer E Q (τ ) with the counterexample μμ′;
8: return continue;
9: end if

10: if M0 ‖ C |= π then
11: Answer E Q (ι) with yes;
12: Answer E Q (τ ) with yes;
13: return yes and report “M0 ‖ M1 |= π ”;
14: else
15: Let α be a witness to M0 ‖ C �|= π ;
16: Call IsWitness(α);
17: end if

tion C = (X1, ι1(X1), τ1(X1, X′ )) in line 1. It then checks whether a valuation μ exists in which ι1[μ] ∧ ¬ι[μ] = T (line 2). 
1
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Fig. 1. CBAG algorithm.

If so, then μ is returned to the C DN F ι instance as a counterexample for it to learn a new candidate initial function ι′
(line 3) and continue is returned to the learner (line 4). When there is a candidate function ι for which there is no valua-
tion μ that ι1[μ] ∧ ¬ι[μ] = T , the candidate function of ι is a satisfied initial function for ιA . Next, the algorithm checks 
whether a pair (μ, μ′) exists in which τ1[μ, μ′] ∧¬τ [μ,μ′] = T (line 6). If the answer is yes, the algorithm returns (μ, μ′)
as a counterexample for the C DN Fτ instance to learn another candidate function τ ′ (line 7) and continue to the learner
(line 8). Otherwise, the candidate function of τ is a satisfied transition function for τA . The last step is to check whether 
the candidate assumption C satisfies the Assume-Guarantee rule in Definition 5 (line 10). If so, the algorithm returns both 
C DN F instances with yes (lines 11 and 12), returns yes to the learner, and reports “M0 ‖ M1 |= π ” (lines 13). Otherwise, 
let α be the witness to M0 ‖ C �|= π ; the algorithm calls IsW itness(α) (i.e., IW algorithm) to check whether α can be the 
counterexample for ι, τ ; otherwise, it witnesses the fact that M0 ‖ M1 �|= π .

3.2.3. The original witness analysis algorithm
When M0 ‖ C �|= π is witnessed by a counterexample α, it is required IW algorithm (presented in Algorithm 3) to analyze 

whether α can be returned to either C DN F ι , C DN Fτ or whether it actually witnesses that M0 ‖ M1 �|= π . IW algorithm 

Algorithm 3 (IW algorithm) IsW itness(α).
Input: α is a witness to M0 ‖ C �|= π
Output: continue and a counterexample to E Q (ι), or continue and a counterexample to E Q (τ ), or no to the learner and a counterexample

1: Let α �X1 = μ0μ1...μt ;
2: if ι1[μ0] = F then
3: Answer E Q (ι) with the counterexample μ0;
4: return continue;
5: end if
6: for i := 1 to t do
7: if τ1[μi−1, μi ] = F then
8: Answer E Q (τ ) with the counterexample μi−1μi ;
9: return continue;

10: end if
11: end for
12: return no + α and report “M0 ‖ M1 �|= π is witnessed by α”;

starts by restricting α on X1 in line 1. Let μ0μ1...μt be the result. Then, it checks whether ι1[μ0] = F , and finally, it 
returns μ0 to the C DN F ι so that this instance can learn another better candidate initial function ι′ (line 3) and continue
to the learner (line 4). When ι1[μ0] = T , the algorithm continues to find a couple of valuations μi−1, μi ∈ {μ0, μ1, ..., μt}, 
such that τ1[μi−1, μi] = F (line 7). This pair (μi−1, μi) will be returned to the C DN Fτ so that this instance can learn 
another, better transition function τ ′ (line 8) and continue to the learner (line 9). When no such couple (μ, μ′) exists, the 
algorithm returns no + α and reports that “M0 ‖ M1 �|= π is witnessed by α” and stops (line 12).

3.2.4. The original assumption generation algorithm
The CBAG algorithm creates a learner with two instances of the CDNF algorithm [10], called instances C DN F ι and 

C DN Fτ . These instances interact with a teacher, which is where OMQ, EQ, and IW algorithms are implemented. An overview 
of CBAG algorithm is shown in Fig. 1. Flowcharts are used to present both CBAG and LWAG algorithms because of the big 
complexity of these algorithms which contain both C DN F ι and C DN Fτ instances with other assumptions related compu-
tation. Note that we use the notation A = (ιA, τA) as a brief representation of the contextual assumption to be generated 
as defined in Definition 6. Hereafter, we also use arrows with empty head ( ) to show data-flow, and arrows with solid 
head ( ) to show control-flow.

In CBAG algorithm, the two Boolean functions of ιA and τA are initialized in step 1 with T (true). For each of the 
conjectures (ιA, τA) (i.e., an assumption candidate), the learner sends the teacher an equivalence query in step 2. EQ 
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Table 2
Implication operation truth table.

θ γ θ → γ

F F T
T F F
F T T
T T T

algorithm is implemented in this step in the teacher to answer the learner. If the teacher returns yes, the algorithm stops 
and returns the conjecture (ιA, τA) as the needed assumption. If the teacher returns no and a counterexample (cex) after 
analyzing that the given system violates the property, the algorithm also stops and returns no and cex. This answer means 
that the given system violates the property with a counterexample cex. After analyzing in IW algorithm that using the 
counterexample cex can generate another candidate function, if the teacher returns continue and a counterexample cex to 
either C DN F ι or C DN Fτ , the learner will use cex to learn a new corresponding candidate function (either ιA or τA ) (step 
3). In this step, the learner interacts with the teacher which uses OMQ algorithm to answer the learner (step 4). When it 
finishes learning and creating a new conjecture, the learner will ask a new equivalence query by returning to step 2. This 
loop (from step 2 to 4) is repeated until the teacher returns either yes or no and cex.

Although CBAG algorithm can nicely generate assumptions, it does not support system verification in the context of soft-
ware evolution. If we simply use the method to generate assumptions as described in the framework proposed by Hung 
et al. [33], there will be no reduction in the number of times assumptions need to be regenerated. Consequently, during 
system change, this process involves significant effort when rechecking modified systems as they evolve daily during their 
development cycle. The sections below describe a way to reduce the number of times assumptions must be regenerated by 
generating weaker assumptions than those generated by CBAG algorithm and integrating those assumptions into a frame-
work for rechecking modified systems.

4. A local weakest assumption generation method

4.1. An improved technique for answering membership queries

As shown above in Section 3.1, in CDNF algorithm, the generated Boolean function depends on how the teacher answers 
membership queries and whether yes or no (i.e., λ[v] = T or λ[v] = F , respectively) are returned to the learner. As a result, 
to improve the CDNF–based assumption generation method, we first need to focus on improving the technique by which of 
the teacher answers the learner.

After analyzing OMQ algorithm together with Table 2, we observe that the answering technique in this algorithm can be 
improved as follows. The relationship between M1 and A in Definition 6 implies that ιM1 (X1) → ιA(X1) and τM1 (X1, X′

1) →
τA(X1, X′

1). Table 2 shows a truth table of the implications of the Boolean operation, where θ and γ are two arbitrary 
Boolean functions. From Table 2, we can see that the technique to answer membership queries in Algorithm 1 is correct, 
but does not cover all the cases where the answer can be yes. To find that θ → γ = T , a result of θ = T (true) guarantees 
that γ = T ; however when θ = F ( f alse), there is still a case where γ = T . Based on this observation, an improved version 
of OMQ algorithm is presented in Algorithm 4 - IMQ algorithm. A new symbol, question, is returned to the learner when 
θ = F , whereas θ is either ι1(X1) or τ1(X1, X′

1) (line 4). The learner will first make a copy of the learning status before 

Algorithm 4 (IMQ algorithm) ImprovedIsMember(type, v).
Input: (ι, μ): a membership query for the target ιA(X); or (τ , (μ, μ′)): a membership query for the target τA(X1, X1

′)
Output: yes or question

1: if θ[v] = T then � When type is ι, θ is ι1; when type is τ , θ1 is τ1

2: return yes
3: else
4: return question
5: end if

treating the question results as a yes to generate the candidate function. Then, it sends equivalence queries to the teacher. 
When the candidate does not satisfy the assume-guarantee rule in Definition 5, it retrieves the previously stored learning 
status and treats the corresponding question result as a no, at which point it starts the learning process again. However, 
when θ = T , the algorithm returns yes to the learner in the same way as OMQ algorithm (line 2).

4.2. A backtracking local weakest assumption generation algorithm

Using the improved answering technique to membership queries in IMQ algorithm, this section shows a backtracking 
algorithm, known as LWAG algorithm, that generates weaker assumptions than those generated by CBAG algorithm shown 
in Section 3. LWAG algorithm is shown in Fig. 2. A correctness proof of LWAG algorithm will be presented in Section 4.3.
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Fig. 2. LWAG algorithm to generate local weakest assumptions for CBSs.

The key idea of LWAG algorithm is to perform a “try” operation to learn either an initial or transition Boolean function 
(ιA or τA ) for each question membership query result from the teacher. Initially, the question result is considered as a 
“yes”. When an attempt is unsuccessful, the algorithm backtracks one step and considers the question result as a “no”. The 
algorithm then restarts the learning process with the newly considered as “no” membership query result. To be able to 
backtrack one step after an unsuccessful attempt, we need to make a copy of the learning status of the CDNF algorithm 
before treating the question result as “yes”, allowing it to backtrack and restore the learning process later.

In LWAG algorithm, the learner initializes the initial function ιA and transition function τA of the candidate assumption 
(conjecture) to be generated with T (true) in step 1. Subsequently, for each conjecture of (ιA, τA), the learner sends the 
teacher an equivalence query (step 2). The teacher uses EQ algorithm to check whether the conjecture satisfies the assume-
guarantee rules in Definition 5. If the teacher returns a yes answer, the algorithm terminates and returns yes and the 
conjecture (ιA, τA) as the needed assumption. If the teacher returns continue and cex after the analysis, using the cex, the 
learner will generate a new candidate Boolean function. Depending on whether cex is for C DN F ι or C DN Fτ , the learner
will make a copy of the status of the corresponding learning process (i.e., the CDNF algorithm’s status for learning ιA or 
τA ) (step 6) before learning a new function (ιA or τA ) (conjecture function) for the next conjecture (step 7). In step 7, the 
learner interacts with the teacher which is using IMQ algorithm while “walking” (step 8) to learn a new conjecture function. 
During walking, the learner first treats a question result as a yes to generate a conjecture function. The learner also stores 
membership query results returned from the teacher in a list that can be checked later. When the learner finishes learning 
a new conjecture, it comes back to step 2 to ask the teacher the corresponding equivalence query. If the teacher returns 
no and a counterexample cex after determining that the given system violates the given property, then the learner checks 
whether any membership query result exists with a question result (step 3). If yes, this means that the corresponding 
valuation is not a member of the target conjecture function. The learner will change the corresponding question to no (step 
4), return to the previous step and start the learning process again from the backed-up status by considering the question
result as a yes (step 5). Note that the learner will still interact with the teacher by sending membership queries while 
walking (step 8), but it will not repeat the membership queries for valuations that have already been asked. For each a 
new conjecture, the learner will return to step 2 to ask a new equivalence query for the newly created conjecture. If the 
teacher returns no and cex after determining that the given system violates π , but no membership query result of question
exists in the list of results, then all the possible cases have been tried in which a valuation μ (or μμ′) is such that when 
ι1[μ] = F (or τ1[μ, μ′] = F ), the corresponding ιA[μ] = T (or τA[μ, μ′] = T ), but without success. Consequently, no suitable 
assumption can be found for the given M0, M1, and π . At that point, the algorithm returns no and cex and terminates.

4.3. Correctness

LWAG algorithm was developed based on CBAG algorithm, in which each of the learning steps is actually an attempt to 
learn either an initial or transition Boolean function (ιA or τA ). When an attempt does not successfully generate a satisfied 
conjecture, the learner backtracks to the step before the attempt to learn a new conjecture, which is why it is called a 
backtracking algorithm. Each attempt actually contains a part of CBAG algorithm – the learning process that starts at step 
4 of LWAG algorithm. The algorithm changes one question result to no and learns a new conjecture, which it then uses to 
send the teacher the first equivalence query, and so on.
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To prove the correctness of LWAG algorithm, we follow the three steps below to prove its soundness, completeness, and 
termination. Let Mi = 〈Xi, ιi(Xi), τi(Xi, X′

i)〉 be transition systems for i = 0, 1 and π be a state predicate over X = X0 ∪ X1. 
We have the following lemmas.

Lemma 1 (Soundness).

1. Let ι(X1) and τ (X1, X′
1) be Boolean functions over X1 and X1 ∪ X′

1 , respectively. If LWAG algorithm reports yes, then M0||M1 |= π
and A = 〈X1, ι(X1), τ (X1, X′

1)〉 is the corresponding assumption.
2. Let ι(X1) and τ (X1, X′

1) be Boolean functions over X1 and X1 ∪ X′
1 , respectively. If LWAG algorithm reports no and cex, then that 

cex is the witness to M0||M1 �|= π .

Proof. When LWAG algorithm reports yes in step 2, it has verified that the conjecture A = 〈X1, ιA(X1), τA(X1, X′
1)〉 is actu-

ally a required assumption using EQ algorithm (step 2). Based on the correctness of that algorithm, we have M0||M1 |= π . 
In contrast, when the algorithm reports no and cex (step 3 returns no), it has verified that the list of membership query 
results contains no question result, which means there is no difference between the results returned by OMQ algorithm 
and the results returned by IMQ algorithm. Therefore, the same conjecture as in CBAG algorithm has been submitted to EQ 
algorithm for an equivalence query. Consequently, the answer no and cex is correct and the cex is the witness to M0||A �|= π
by the correctness of EQ algorithm. When the teacher returns continue and a counterexample cex that the learner can 
use to generate a new Boolean function candidate after analyzing in IW algorithm, the algorithm continues creating new 
conjecture functions and submitting them to the teacher (steps 6 and 7). The algorithm terminates in the two cases de-
scribed above, where the teacher returns either yes or no and cex and there is no question result in the list of membership 
query results. �
Lemma 2 (Completeness).

1. If M0||M1 |= π , then LWAG algorithm reports yes for some Boolean functions ι(X1) and τ (X1, X′
1) over X1 and X1 ∪ X′

1 , respec-
tively.

2. If cex is a witness to M0||M1 �|= π , then LWAG algorithm reports no and cex for some Boolean functions ι(X1) and τ (X1, X′
1) over 

X1 and X1 ∪ X′
1 , respectively.

Proof. When M0||M1 |= π , based on the correctness of CBAG algorithm, there exists a ι(X1) and τ (X1, X′
1) such that a 

conjecture of A = 〈X1, ι(X1), τ (X1, X′
1)〉 satisfies the rule in Definition 6. Because EQ algorithm returns yes, LWAG algorithm 

also returns yes (step 2). In contrast, when cex is a witness to M0||M1 �|= π , we consider the following two cases. When 
some question results exist in the membership query result list (i.e., step 3 returns yes), the algorithm will not return 
the verification result yet. Instead, it continues setting one of the question results to no (step 4) and trying to learn new 
conjecture functions (step 5). This process repeats until no question result remains in the list. In this case, the conjecture 
submitted to EQ algorithm is the same as in CBAG algorithm. If the algorithm still returns no and cex, this response is 
equivalent to returning a witness of cex to the original learner to witness the fact that M0||M1 �|= π (step 3 returns no). In 
that case, LWAG algorithm returns no and cex for the conjecture functions of ι(X1) and τ (X1, X′

1). Alternatively, when the 
teacher returns continue and a counterexample cex that the learner can use to learn a better candidate Boolean function 
after analyzing, the algorithm continues running to create new conjecture functions and submitting new conjectures to the 
teacher (steps 6, 7 and then 2). This process repeats until the teacher returns either yes or no and a counterexample cex
that witnesses the fact that M0||M1 �|= π . Thus, these are the same as the above two described cases in which the algorithm 
returns yes or no and cex. �
Lemma 3 (Termination). LWAG algorithm terminates in a finite number of membership queries and equivalence queries.

Proof. CBAG algorithm terminates within a polynomial number of queries in |ι1(X1)|DN F , |ι1(X1)|C N F , |τ1(X1, X′
1)|DN F , 

|τ1(X1, X′
1)|C N F , and |X1| [13]. In LWAG algorithm, if the teacher returns yes (step 2), then the algorithm stops. If the 

teacher returns a no result and a counterexample cex with which the learner cannot learn another Boolean function for 
a new conjecture (i.e., a check for “violation?” returns yes) (a real counterexample), the learner will update one question
result to no (if any exist) (step 3) and continues trying to learn another conjecture (steps 4 and 5). If the query continues 
to return a no result and a real counterexample, eventually, there will be no more question responses in the member-
ship query result list because the number of question results in the list is finite. At that point, the algorithm terminates 
thanks to the correctness of CBAG algorithm presented in Section 3. Otherwise, when the teacher returns continue and a 
counterexample cex with which the learner can learn a new Boolean function for a new conjecture after analyzing (i.e., a 
check for “violation?” returns no), the algorithm continues running, creating new conjecture functions and submitting new 
conjectures to the teacher (steps 6 and 7). This process repeats until the teacher returns either yes or a no result and a real 
counterexample cex. The number of steps needed to create conjecture functions is also finite because the CDNF algorithm 
can learn any Boolean function in a finite number of steps [10]. Therefore, the process for generating a new conjecture will 
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Fig. 3. Relationships among L(A O ), L(AN ), and L(AW ).

terminate in a finite number of steps. Eventually, this case becomes one of the above two described cases and the algorithm 
will terminate. �
Lemma 4 (Complexity). In the worst case, LWAG algorithm terminates in n2.SizeDN F .SizeC N F membership queries and
∑SizeDN F .SizeC N F

i=1 (SizeDN F .SizeC N F − i + 1) equivalence queries to learn the corresponding ιA or τA function.

Proof. To implement LWAG algorithm, we need to implement two learner instances using the CDNF algorithm [10] to learn 
ιA and τA . CBAG algorithm requires SizeDN F .SizeC N F equivalence queries and n2.SizeDN F .SizeC N F membership queries to 
learn one Boolean function, where n is the basis size [10]. In LWAG algorithm, to learn the ιA or τA function (because the 
learner stores previous membership query results) the total number of membership queries is the same as CBAG algorithm 
in the worst case, which is n2.SizeDN F .SizeC N F . With each counterexample cex returned from an equivalence query, the 
algorithm creates a backtracking point by backing up the status of the corresponding CDNF algorithm (step 6). Therefore, 
we will have SizeDN F .SizeC N F − 1 backtracking points. This is because the last answer from the teacher will be a real coun-
terexample (a counterexample from which the learner cannot learn another Boolean function to create a new conjecture), 
and the learner will not create a backtracking point for this answer. For each backtracking point, the learner needs to turn 
some question membership query answers to no (step 4) and then send the teacher a new equivalence query (steps 5 
then 2). In the worst case, with the ith backtracking point (where 1 ≤ i < SizeDN F .SizeC N F ), the algorithm will require 
SizeDN F .SizeC N F − i + 1 equivalence queries. This is because we need SizeDN F .SizeC N F equivalence queries to learn the 
function at step ith in total – but we already asked i − 1 equivalence queries before each step. Therefore, in total, and in the 
worst case, we will need 

∑SizeDN F .SizeC N F
i=1 (SizeDN F .SizeC N F − i + 1) equivalence queries. This complexity is clearly greater 

than the complexity of CBAG algorithm. �
From Lemma 4, the worst-case complexity of LWAG algorithm is greater than that of CBAG algorithm. In regards to the 

average-case complexity, the experiment results presented in Section 6 show that LWAG algorithm takes longer to generate 
assumptions than CBAG algorithm. However, in general, there are some scenarios where LWAG algorithm is faster than CBAG 
algorithm. In such cases, the best-case complexity of LWAG algorithm is less than that of CBAG algorithm.

Lemma 5 (Language relationship). Let A O , AN , and AW be assumptions generated by CBAG algorithm, LWAG algorithm, and the 
weakest assumption, respectively. The relationship among L(A O ), L(AN), and L(AW ) is as follows: L(A O ) ⊆ L(AN) ⊆ L(AW ).

Proof. We consider the following cases to prove the correctness of Lemma 5. Because AW is the weakest assumption, we 
always have L(AN ) ⊆ L(AW ). In the case where no question result exists when the teacher answers yes to the equivalence 
query, the final assumption is the same as the assumption generated by CBAG algorithm. Therefore, in this case, L(AN ) is 
equal to L(A O ). The last case is the case where some question results exist when the teacher answers yes to the equivalence 
query. From Table 2, this means the cases in which X = F but Y = T is integrated into the final accepted Boolean functions 
of ιA and τA . To prove L(A O ) ⊆ L(AN ), we prove that ∀α ∈ L(A O ), we also have α ∈ L(AN), where α = μ0μ1...μt ∈ L(A O ). 
According to the T race definition, we have ιA O [μ0] = T and τA O [μi, μi+1] = T for 0 ≤ i < t . From OMQ algorithm, we have 
ι1[μ0] = T and τ1[μi, μi+1] = T for 0 ≤ i < t . Moreover, thanks to IMQ algorithm, we have ιAN [μ0] = T and τAN [μi, μi+1] =
T for 0 ≤ i < t . This means that ∀α : α ∈ L(AN). That is L(A O ) ⊆ L(AN). Fig. 3 illustrates the relationships among L(A O ), 
L(AN), and L(AW ). �
Lemma 6 (Local weakest assumption). Assume that LWAG algorithm does not return the assumption immediately after obtaining the 
first satisfied assumption; instead, it continues running to find all possible assumptions until all of the question results have been 
changed into no results in the list.

Let A be the above set of assumptions and A be the first generated assumption. A is the local weakest assumption in A (Remark 1).

Proof. Let the first-found assumption be AN W and an arbitrary assumption found by LWAG algorithm after AN W be AN . 
Let the list of membership query results corresponding to AN W and AN be ListN W and ListN , respectively. We prove that 
L(AN) ⊆ L(AN W ). To do this, we prove that ∀α ∈ L(AN); we also have α ∈ L(AN W ), where α = μ0μ1...μt ∈ L(AN). According 
to the T race definition, we have ιAN [μ0] = T (true) and τAN [μi, μi+1] = T for 0 ≤ i < t . In LWAG algorithm, when it reaches 
a satisfied assumption, the algorithm already considers all the existing question results in the list as yes (steps 5 and 
7). Because AN W is the first found assumption, assume that AN is found after n steps of changing question result to no, 
where n > 0. We can easily see that all the yes items in ListN also exist in ListN W . Therefore, we have ιANW [μ0] = T
and τANW [μi, μi+1] = T for 0 ≤ i < t . Consequently, we obtain α ∈ L(AN W ). The relationship between ListN W and ListN is 
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Fig. 4. The relationship between ListNW and ListN .

shown in Fig. 4 (where the question results are represented as question mark (“?”) symbols). We can see that after some 
steps of changing a question result to no (step 4) in ListN W , we will have ListN . �

Thus far, we have presented LWAG algorithm that uses an improved technique to answer membership queries. This 
algorithm generates weaker assumptions than those generated by CBAG algorithm. Although LWAG algorithm has a greater 
complexity than does CBAG algorithm, the generated assumptions can reduce the number of times assumptions must be 
regenerated when rechecking a modified system in the context of software evolution. In the long run, where most of the 
effort is spent on software maintenance, this will significantly reduce the verification cost for rechecking evolving systems, 
especially large-scale systems. To reduce the verification cost of evolving systems, Section 5 shows an effective framework 
for using these weaker assumptions to recheck evolving CBSs.

5. A framework for modular verification of evolving CBS

In practice, when software verification cost increases daily because of software evolution which can happen all time 
during software life cycle, more reusable assumptions, such as weak assumptions, play an important role in reducing ver-
ification cost by being used in the framework presented in this section. The empirical results shown in Section 6 clearly 
indicates the effectiveness of using weak assumptions when rechecking evolved software.

Consider a CBS M that contains two components M0 and M1. Assume that M0 is a type of static framework component 
that remains unchanged during the software life cycle. M1 is a business/extension component that is supposed to change 
during software evolution. Let A be an assumption under which M satisfies a predicate π . When software is modified, there 
are several types of change that we must consider, as follows.

1. When some existing behaviors of M1 are removed, it becomes M ′
1 with L(M ′

1) ⊆ L(M1). Then, we already have L(M ′
1) ⊆

L(A) because L(M1) ⊆ L(A). Therefore, the assumption will not need to be regenerated.
2. When updating some existing behaviors of M1, it becomes M ′

1 with L(M ′
1) ⊆ L(M1). In this case, we already have 

L(M ′
1) ⊆ L(A) because L(M1) ⊆ L(A). Therefore, the assumption will not need to be regenerated.

3. When updating some existing behaviors of M1, it becomes M ′
1 with L(M ′

1) � L(M1) and L(M ′
1) ⊆ L(A). This assumption 

will not need to be regenerated.
4. When updating some existing behaviors of M1, it becomes M ′

1 with L(M ′
1) � L(M1) and L(M ′

1) � L(A); therefore, the 
assumption will need to be regenerated.

5. When adding some new behaviors to M1, it becomes M ′
1 with L(M ′

1) ⊆ L(M1); however, we already have L(M ′
1) ⊆ L(A)

because L(M1) ⊆ L(A). Therefore, the assumption will not need to be regenerated.
6. When adding some new behaviors to M1, it becomes M ′

1 with L(M ′
1) � L(M1) and L(M ′

1) ⊆ L(A). The assumption will 
not need to be regenerated.

7. When adding some new behaviors to M1, it becomes M ′
1 with L(M ′

1) � L(M1) and L(M ′
1) � L(A). Therefore, this as-

sumption will need to be regenerated.

From the above types of change, we can see that numbers 4 and 7 require A to be regenerated because L(M ′
1) � L(A). 

Therefore, the greater L(A) is, the greater L(M ′
1) can be such that L(M ′

1) ⊆ L(A) (i.e., more behaviors can be added to M1
such that L(M ′

1) ⊆ L(A)). Consequently, the greater L(A) is (i.e., the weaker A is), the more cost of software verification can 
be reduced because the number of times that A can be reused is increased. Consequently, weak assumptions play a key role 
in reducing the software verification cost in the context of software evolution.

As shown in Section 4, the assumption generated by LWAG algorithm AN is weaker than the assumption A Org generated 
by CBAG algorithm. Therefore, in the context of software evolution, the assumption AN can be used for modular verification 
in modified CBSs to reduce the verification cost as shown in Fig. 5.

As proposed in the framework by Hung et al., the previous assumption A Org can be reused when verifying CBS with 
modified M1 [33]. This situation is much better than the one in which we need to restart the assumption learning process all 
over again from the beginning. Using LWAG algorithm presented in Section 4, the generated assumption AN has L(A Org) ⊆
L(AN). As a result, by using AN as the starting point for verifying the modified CBS, we can reduce the number of times 
that assumptions must be regenerated from A Org to AN as shown in Fig. 5.
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Fig. 5. Reusing assumptions generated by LWAG algorithm for evolving CBS.

Fig. 6. The algorithm to regenerate assumption for evolving CBS.

5.1. The proposed framework

This section proposes a framework for verifying CBSs in the context of component change. This framework was developed 
based on the framework proposed by Hung et al. [33,32]. The proposed framework is shown in Fig. 6 and has the following 
steps.

Let M = M0||M1 be a component-based software, π be a predefined predicate, and AN be the assumption generated by 
LWAG algorithm.

1. Here, Model M1 of a component-based software M0||M1 evolves during the software life cycle. Assume that M ′
1 is the 

modified model of M1.
2. The previous assumption AN is used as the starting assumption for the reverification process. AN is checked to see if 

M ′
1 � AN . If M ′

1 � AN , then M0||M ′
1 |= π because we already have M0||AN |= π . If M ′

1 � AN , then this step returns 
f alse and a counterexample, cex.

3. The returned cex is analyzed to see if the modified system (M0||M ′
1) truly violates the property. If it does, then we have 

M0||M ′
1 �|= π . Otherwise, we will need to generate a new assumption.

4. The new assumption Anew is generated using AN as a starting candidate, the counterexample cex, and M0. To avoid 
learning assumptions that had been sent to the teacher, the learner needs to store required information for checking 
candidate and membership queries duplication. This is a simple task and is not mentioned in both LWAG algorithm and 
the framework shown in Fig. 6.

Although the framework in Fig. 6 shows the simple case in which the CBS is composed of only two component models 
M0 and M1, we can generalize it to larger systems containing n-component models, M0, M1, ..., Mn , where n ≥ 2. Neverthe-
less, the framework for a larger system consists of similar steps as described above because we focus only on the modified 
component models.

In 2016, He et al. proposed a fast assumption generation method [27] by learning the subpredicates of the assumption to 
be generated simultaneously. However, even when using the assumptions generated by He et al.’s method, the framework 
proposed by Hung et al. [33,32] still needs to regenerate the assumption every time even a small change occurs in the 
component model. Thus, over the full software life cycle, even when using the more effective assumption generation method, 
the regeneration cost may still be very high.

5.2. An example

This section shows an example of generating an assumption using LWAG algorithm and the framework shown in Sec-
tion 5.1 for verifying an evolving system. Consider a system M = M0||M1, where Mi = 〈Xi, ιi(Xi), τi(Xi, X′

i)〉 is a transition 
system for i = 0,1, and π is a state predicate over X0 ∪ X1 as shown below. In this example, we use the notation “C DN F ι” 
for the CDNF algorithm instance for learning ιA and “C DN Fτ ” for the CDNF algorithm instance for learning τA . We also use 
(ιA, τA) to represent a candidate assumption without loss of generality.
XM0 = {1, 2},
X′

M0
= {3, 4},

ιM0 = (−1 ∧ −2),
τM0 = (−1 ∧ −2 ∧ −3 ∧ 4)|(−1 ∧ 2 ∧ 3 ∧ −4)|(1 ∧ −2 ∧ 3 ∧ 4)|(1 ∧ 2 ∧ −3 ∧ −4), and
XM1 = {5, 6},
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Table 3
Generation of the first assumption using LWAG algorithm.

Step Action Result

Step 1 Set ιA = T , τA = T ιA = T , τA = T

Step 2 Ask Equivalence Query (EQ) for (ιA = T , τA = T ) Return 0100 to C DN Fτ

Step 6 Backup status -

Step 7 Try to learn new τA ιA = T , τA = (6)

Step 2 Ask EQ for (ιA = T , τA = (6)) Return 0001 to C DN Fτ

Step 6 Backup status -

Step 7 Try to learn new τA ιA = T , τA = (6)|(8)

Step 2 Ask EQ for (ιA = T , τA = (6)|(8)) Return 0101 to C DN Fτ

Step 6 Backup status -

Step 7 Try to learn new τA ιA = T , τA = (6)|(8)|(6 ∧ 8)

Step 2 Ask EQ for (ιA = T , τA = (6)|(8)|(6 ∧ 8)) Return 0011 to C DN Fτ

Step 6 Backup status -

Step 7 Try to learn new τA . While learning, it asked ιA = T , τA = (6)|(8)|(6 ∧ 8)|(7)

membership query for 0010 and the answer is
question. This is first considered as T (True).

Step 2 Ask EQ for (ιA = T , τA = (6)|(8)|(6 ∧ 8)|(7)) Return 10 to C DN F ι

Step 6 Backup status -

Step 7 Try to learn new ιA ιA = (5),
τA = (6)|(8)|(6 ∧ 8)|(7)

Step 2 Ask EQ for (ιA = (5), τA = (6)|(8)|(6 ∧ 8)|(7)) Return 00 to C DN F ι

Step 6 Backup status: -

Step 7 Try to learn new ιA . While learning, it asked ιA = (5)|(−6),
membership query for 11 and the answer is τA = (6)|(8)|(6 ∧ 8)|(7)

question. This is first considered as T (True).

Step 2 Ask EQ for (ιA = (5)|(−6), τA = (6)|(8)|(6 ∧ 8)|(7)) Return yes

X′
M1

= {7, 8},
ιM1 = (−5 ∧ −6),
τM1 = (−5 ∧ −6 ∧ −7 ∧ 8)|(−5 ∧ 6 ∧ 7 ∧ −8)|(5 ∧ −6 ∧ 7 ∧ 8)|(5 ∧ 6 ∧ −7 ∧ −8),
π = (−1 ∧ −2 ∧ −5 ∧ −6)|(−1 ∧ 2 ∧ −5 ∧ 6)|(1 ∧ −2 ∧ 5 ∧ −6)|(1 ∧ 2 ∧ 5 ∧ −6)|(1 ∧ 2 ∧ 5 ∧ 6)|(1 ∧ −2 ∧ 5 ∧ 6)|(1 ∧ 2 ∧ −5 ∧
−6)|(1 ∧ 2 ∧ −5 ∧ 6).

5.2.1. Generating the first assumption
The first step of the proposed framework is to generate an assumption AN that satisfies Definition 6. Table 3 shows 

how LWAG algorithm generates the assumption AN . From the result of LWAG algorithm shown in Table 3, the generated 
assumption AN is as follows:
XAN = XM1 = {5, 6},
X′

AN
= X′

M1
= {7, 8},

ιAN = (5)|(−6), and
τAN = (6)|(8)|(6 ∧ 8)|(7).
In the meantime, the result of CBAG algorithm forms a stronger assumption, A O , as follows:
XA O = XM1 = {5, 6},
X′

A O
= X′

M1
= {7, 8},

ιA O = (−6), and
τA O = (6)|(8)|(6 ∧ 8)|(7 ∧ 8).

5.2.2. Verifying evolving systems
Consider the case in which M1 is modified by adding the predicate (−5 ∧ −6 ∧ 7 ∧ −8) to τM1 , causing M1 to become 

the component M ′
1 as follows:

XM′
1
= {5, 6},

X′ ′ = {7, 8},

M1
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Table 4
Generating an assumption for an evolving system using LWAG algorithm and the proposed framework.

Step Action Result

Step 2 Ask EQ for ((5)|(−6), (6)|(8)|(6 ∧ 8)|(7)) Return 1000 to C DN Fτ

Step 6 Make a copy of status -
Step 7 Try to learn new τA ιA = (5)|(6), τA = (6)|(8)|(6 ∧ 8)|(7)|(5)

Step 2 Ask EQ for ((5)|(−6), (6)|(8)|(6 ∧ 8)|(7)|(5)) Return yes

Table 5
Assumption generation methods comparison.

Test 
cases

Common CBAG algorithm LWAG algorithm

B |X0| |X1| EQ I T Time (ms) Mem (B) |L(A O )| EQ I T Time (ms) Mem (B) |L(AN )|

TC1_0 4 2 2 8 2 1 3,093 1,371,782 70 11 1 1 4,032 1,401,310 177
TC2_0 4 2 2 8 2 2 1,475 1,472,883 94 10 1 1 1,737 1,458,893 182
TC3_0 4 2 2 6 2 2 1,665 1,284,175 30 10 1 1 3,007 1,405,921 163
TC4_0 4 2 2 6 2 2 1,649 1,359,926 30 10 1 1 2,808 1,441,094 163
TC5_0 4 3 3 10 5 5 31,486 1,711,054 340 18 3 3 117,112 1,704,387 3,343
TC6_0 4 4 4 18 9 10 1,457,649 5,511,856 4,680 34 7 7 6,697,195 5,760,382 59,455

ιM′
1
= (−5 ∧ −6),

τM′
1
= (−5 ∧ −6 ∧ −7 ∧ 8)|(−5 ∧ 6 ∧ 7 ∧ −8)|(5 ∧ −6 ∧ 7 ∧ 8)|(5 ∧ 6 ∧ −7 ∧ −8)|(−5 ∧ −6 ∧ 7 ∧ −8).

We can easily see that M ′
1 � AN but M ′

1 � A O . Therefore, there is no need to regenerate the assumption when AN is 
used as a starting assumption in the proposed framework in Section 5.1. However, if A O were to be used as a starting 
assumption in the framework, we would need to generate another assumption.

In the case where M1 is modified by adding the predicate (5 ∧ −6 ∧ −7 ∧ −8) to τM1 , M1 becomes the component M ′′
1

as follows:
XM′′

1
= {5, 6},

X′
M′′

1
= {7, 8},

ιM′′
1
= (−5 ∧ −6),

τM′′
1
= (−5 ∧ −6 ∧ −7 ∧ 8)|(−5 ∧ 6 ∧ 7 ∧ −8)|(5 ∧ −6 ∧ 7 ∧ 8)|(5 ∧ 6 ∧ −7 ∧ −8)|(5 ∧ −6 ∧ −7 ∧ −8).

We can see that M ′′
1 � AN and M ′′

1 � A O . Therefore, regardless of whether A O or AN is used as the starting assumption 
in the framework, we will need to generate new assumptions. Table 4 shows how LWAG algorithm and the framework in 
Section 5 are applied to verify the evolving system for the one mentioned in the beginning of Section 5.2 when M1 evolves 
to be M ′′

1 .

6. Experiments

To evaluate the effectiveness of LWAG algorithm, experiments are performed to highlight two key points: (i) a comparison 
between CBAG algorithm and LWAG algorithm and their corresponding generated assumptions; and (ii) a comparison of the 
framework in Section 5.1 between the cases using the assumptions generated by CBAG algorithm and LWAG algorithm after 
the software has been modified. Algorithms presented in Section 3 and Section 4 are implemented in C#.N E T and Microsoft 
Visual Studio Community 2017. The verification tool is called AGVerifier; and is available from http://www.tranhoangviet .
name .vn /p /agverifier.html. AGVerifier is based on the CELL framework [36] and includes ready-to-use test cases. Those test 
cases and the evolved ones are described in Section 6.1 and 6.2. We used a bounded model–checking approach to conduct 
the experiments in which the bound B was selected so that the longest traces in both components of those test cases can 
cover their transitions between all their states. The experiments are performed on a machine with following specifications: 
Microsoft Windows 10 Home edition operating system, Intel Core i5-5200U 2.2 Ghz CPU, 8.00 GBs RAM memory. To present 
reliable experimental results, each test case are performed 10 times and the average results are reported in Table 5 and 
Table 6.

6.1. Assumption generation algorithms comparison

To compare CBAG algorithm with LWAG algorithm with the corresponding generated assumptions, we used the same 
test data for both and compared the same key indicators: the number of equivalence queries for assumption candidates, the 
number of membership queries for the initial and transition functions, the time needed to generate assumptions, memory 
usage, and the size of the languages of the generated assumptions. We performed experiments with the following systems.

• Candy Packaging Line Controller The candy packaging line controller (denoted by TC1) is a system that controls the 
process of candy packaging. The controller is a part of one of our national projects. The design of this controller is 
based on the system called Simple Communication Channel from Cobleigh et al.’s paper [19]. The controller consists of 

http://www.tranhoangviet.name.vn/p/agverifier.html
http://www.tranhoangviet.name.vn/p/agverifier.html
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Table 6
The generated assumptions comparison in software evolution context.

Test 
cases

CBAG algorithm LWAG algorithm

EQ I T Time(ms) Mem (B) |L(AR O )| EQ I T Time(ms) Mem (B) |L(ARN )|
TC1_0.1 - - - - - - - - - - - -
TC1_0.2 3 0 1 620 1,526,210 108 - - - - - -
TC1_0.3 2 0 0 376 1,546,480 108 2 0 0 680 1520334 215
TC1_0.4 3 0 1 610 1,403,568 108 - - - - - -
TC1_0.4.1 3 0 1 629 1,270,924 108 - - - - - -
TC2_0.1 2 0 0 211 1,439,318 115 - - - - - -
TC2_0.1.1 2 0 0 215 1,565,050 115 - - - - - -
TC2_0.1.2 2 0 0 219 1,332,717 115 - - - - - -
TC2_0.1.2.1 2 0 0 228 1,219,572 115 - - - - - -
TC3_0.1 5 0 3 981 1,533,133 96 - - - - - -
TC3_0.1.1 5 0 3 992 1,445,293 96 - - - - - -
TC3_0.1.1.1 6 0 6 1,250 1,439,177 132 5 0 3 1,775 1,525,369 208
TC3_0.1.1.1.1 5 0 3 998 1,597,769 96 - - - - - -
TC4_0.1 2 0 2 282 1,554,553 62 - - - - - -
TC4_0.1.1 2 0 2 278 1,701,371 62 - - - - - -
TC4_0.1.1.1 2 0 2 267 1,469,968 62 - - - - - -
TC4_0.1.1.1.1 2 0 2 259 1,633,011 62 - - - - - -
TC4_0.1.1.1.1.1 2 0 2 294 1,662,419 62 - - - - - -
TC5_0.1 - - - - - - - - - - - -
TC5_0.2 11 0 25 29,119 1,714,294 1,276 - - - - - -
TC5_0.2.1 10 0 19 25,036 1,699,504 1,276 - - - - - -
TC5_0.2.1.1 10 0 19 25,537 1,702,160 1,276 - - - - - -
TC5_0.2.1.1.1 9 0 18 21,508 1,713,168 1,276 - - - - - -
TC6_0.1 21 0 50 1,071,687 5,705,728 18,792 - - - - - -
TC6_0.1.1 21 0 49 1,096,787 5,735,795 18,792 - - - - - -
TC6_0.1.1.1 20 0 43 1,080,497 6,008,460 18,792 - - - - - -
TC6_0.1.1.1.1 20 0 43 1,051,336 5,292,621 18,792 - - - - - -
TC6_0.1.1.1.1.1 19 0 44 1,061,336 5,778,549 18,792 - - - - - -

two components M0 and M1. M0 has four states: in: candy is poured into a package; process: the package with candy 
is weighed to see if its weigh is correct or not; send: the package with candy is sent to the section where it is soldered; 
ack: the system finished soldering the candy package and it is ready to process other candy packages. M1 has four 
states: process: the candy package is weighed to see if its weigh is correct or not; send: the candy package is sent to the 
section where it is soldered; out: candy package information is displayed on user’s monitor; ack: the system finished 
displaying information and it is ready to process other candy packages. We checked the property that all following 
restrictions need to be satisfied: The system states must be in the following order: in → process → send / out →
ack; after a package is soldered or its information is displayed, candy can be poured into the next package; when the 
system finished packaging the current package, candy can be poured into the next package or the next package can be 
weighed or the next package can be soldered or the next package information can be displayed; the system can have 
some spare time before candy can be poured into the next package. For this candy packaging line controller, we used 
two Boolean variables to encode the states of M0 and M1 (i.e., |X0| = 2 and |X1| = 2).

• Waste sorting line controller The waste sorting line controller (denoted by TC2) is a system that controls the process 
of sorting and processing waste into two categories of organic and inorganic. The controller is another part of the 
national project mentioned above. The controller has two components M0 and M1. M0 has three states: in: an amount 
of waste is put into the system and sorted; organic waste: waste is recognized to be organic; inorganic waste: waste is 
recognized to be inorganic. M1 also has three states: sorted waste: sorted waste (either organic or inorganic) is received 
and prepared to be processed; process: depends on the type of waste, it is passed to the recycling phase (inorganic 
waste) or used to produce chemical fertilizers (organic waste); ack: waste processing is finished and the component 
is ready to receive another amount of waste to work on. We checked the property that all following restrictions need 
to be satisfied: an amount of waste can only be recognized as organic or inorganic after it is received and sorted; the 
amount of waste can only be processed after it is sorted into either organic or inorganic; only after an amount of waste 
is sorted and processed, the system is ready to receive another amount of waste to work on. For this waste sorting line 
controller, we used two Boolean variables to encode the states of M0 and M1 (i.e., |X0| = 2 and |X1| = 2).

• Master / slave system The master / slave system (denoted by TC3) is one of the example system presented in Magee 
and Kramer’s book [43]. This is a typical system where a master thread creates a slave thread to perform some tasks 
such as I/O and continues its work. Later, the master synchronizes with the slave to get the result. The system consists 
of two components M0 and M1. M0 (master) has four states: slave.start: the master created a new slave thread; rotate1: 
the master does its own work; slave.join: the master synchronizes with the slave to get the result; rotate2: the master 
does its own work and gets ready to create a new slave. M1 (slave) has three states: slave.start: the slave is started; 
slave.rotate: the slave does its own work; slave.join: the master synchronized with the slave to get the result and then, 
the slave is ready to be started again. We checked the property that all following restrictions need to be satisfied: after 
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the master starts a slave, it can wait for some time before doing its own work (rotate1); later, it can synchronize with 
the slave to get the result; the master then can continue its own work (rotate2) and is ready to start a new slave. 
For this master / slave system, we used two Boolean variables to encode the states of M0 and M1 (i.e., |X0| = 2 and 
|X1| = 2).

• Simple communication channel The simple communication channel (denoted by TC4) is a common example system used 
in Cobleigh et al.’s paper [19] that controls the process of receiving and sending message / data in a communication 
channel. The channel has two components M0 and M1. M0 has three states: in: the channel received a message; 
send: the message is sent to another channel; ack: the channel is ready to receive another message; M1 has three 
states: send: the message is sent to another channel; out: the channel provides feedback to the monitor thread; ack: the 
channel is ready to send another message. We tested the channel with a more complex safety property that all following 
restrictions need to be satisfied: the channel can only send a message after it receives the message; the channel can 
provide feedback to the monitor thread after it receives and sends a message; the channel is ready to receive another 
message when it finished sending the previous message and providing feedback to the monitor thread. For this simple 
communication channel, we used two Boolean variables to encode the states of M0 and M1 (i.e., |X0| = 2 and |X1| = 2).

• Simple communication channel - variant 1 The simple communication channel - variant 1 (denoted by TC5) is the same 
as the simple communication channel used in Cobleigh et al.’s paper [19]. However, we used three Boolean variables to 
encode the states of M0 and M1 (i.e., |X0| = 3 and |X1| = 3). This is to check the affection of the number of Boolean 
variables inside a transition system to the verification process. This test case can also show that our proposed verifica-
tion method can be used to check software systems represented by Label Transition System (LTS) whose maximum sizes 
can be size of component 0 ×size of component 1 ×(size of property +1) = |C0| ×|C1| ×|perr | = 23 ×23 ×(23 +1) = 576
[35]. An LTS C is a quadruple 〈Q , �, δ, q0〉, where: Q is a non-empty set of states; � ⊆ Act is a finite set of observable 
actions called the alphabet of C ; τ represents the unobservable action of C to its environment; δ ⊆ Q ×� ∪{τ } × Q is a 
transition relation; and q0 ∈ Q is the initial state. When we check whether an LTS C satisfies a required safety property 
p, an error LTS, denoted by perr , is created which traps possible violations with the � state (i.e., the error state). perr of 
a property p = 〈Q , �p, δ, q0〉 is 〈Q ∪ {�}, �p, δ′, q0〉, where δ′ = δ ∪ {(q, a, �) | a ∈ �p and � ∃q′ ∈ Q : (q, a, q′) ∈ δ}.

• Simple communication channel - variant 2 The simple communication channel - variant 2 (denoted by TC6) is the same 
as the simple communication channel used in Cobleigh et al.’s paper [19]. However, we used four Boolean variables to 
encode the states of M0 and M1 (i.e., |X0| = 4 and |X1| = 4). This is to check the affection of the number of Boolean vari-
ables inside a transition system to the verification process. This test case can also show that our proposed verification 
method can be used to check software systems represented by Label Transition System (LTS) whose maximum sizes can 
be size of component 0 × size of component 1 × (size of property + 1) = |C0| ×|C1| ×|perr | = 24 × 24 × (24 + 1) = 4352
[35].

Table 5 shows the results of the experiments. The columns “Test cases”, “B”, |X0|, and |X1| contain the test case short 
name in which “_0” means version 0, the trace length’s bound number, and the sizes of the Boolean variable sets of M0
and M1, respectively. For example, in Table 5, “TC1_0” in line 1 indicates the experimental results for the version 0 of 
TC1 (Candy Packaging Line Controller), and so on. For simplicity without loosing the generality of the proposed method, 
the bound B was selected so that the longest traces in both components of those test cases can cover their transitions 
between all their states. The columns “EQ”, “I”, “T”, “Time(ms)”, and “Mem(B)” are the number of equivalence queries, 
the initial and transition membership queries, the time (in milliseconds), and the memory (in bytes) required to generate 
assumptions, respectively. |L(A O )| and |L(AN )| are the sizes of the corresponding languages of the assumptions generated 
by CBAG algorithm and the improved algorithm, respectively. We calculated |L(A O )| and |L(AN )| by counting the number 
of traces in |L(A O )| and |L(AN )| with the bound shown in the “B” column of Table 5.

From the experimental results shown in Table 5, we can see that the number of queries for assumption candidates, initial 
function candidates, and transition function candidates of the two algorithms are different; the assumptions generated by 
LWAG algorithm are weaker than the assumptions generated by CBAG algorithm. However, LWAG algorithm takes longer 
to generate the assumptions because it requires more processing (i.e., it must process more assumption candidate queries). 
However, the amount of memory used by the two algorithms is similar.

6.2. The effectiveness of the generated assumptions in software evolution context

To compare the effectiveness of the assumptions generated by LWAG algorithm compared to those generated by CBAG 
algorithm in a software evolution context, we implemented the proposed framework described in Section 5 for verifying 
modified systems for the test cases shown in Table 5. When performing the experiments, we also measured the same key 
indicators as presented in Section 6.1. However, we focus on different key information from the experimental results – that 
is, whether a previous assumption can be reused when verifying modified systems (i.e., whether we can avoid regenerating 
assumptions unnecessarily when verifying modified systems).

Table 6 shows the experimental results. “_x.n” indicates that “version x.n was evolved from version x”. For example, “TC1_0.1” 
and “TC1_0.4.1” were evolved from versions “TC1_0” and “TC1_0.4”, respectively. In this table, test cases are modified 
systems of those tested in Section 6.1, in all of which M0 was kept unchanged but M1 was modified from M1 of the 
corresponding previous version. Details of the test cases in Table 6 are described below.
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“TC1_0.1” – “TC1_0.4.1” are modified systems from “TC1_0”, in all of which M1 was modified from M1 of the previous 
version by adding some behaviors as follows. In TC1_0.1, the system can only be ready for processing the next package when 
the current package was weighed, soldered, and the system finished displaying information on user’s monitor. In TC1_0.2, 
the system needs to satisfy the following requirements: after a candy package is weighed or soldered, the information is 
displayed on user’s monitor and the system is ready to process another candy package; the information can be displayed 
on user’s monitor for some time before processing another candy package; the system can be ready for some time before 
it receives another package of candy. In TC1_0.3, when the system finished displaying information on user’s monitor, it can 
receive another candy package. In TC1_0.4, after a package of candy is weighed, the information about the package can 
be displayed on user’s monitor. In TC1_0.4.1, the information can be displayed on user’s monitor for some time before the 
system is ready to process another candy package (e.g., it is waiting for command from user).

Similar to “TC1”, “TC2_0.1” – “TC2_0.1.2.1” are modified systems from “TC2_0” by adding some behaviors as follows. In 
TC2_0.1, when the system finished processing a certain amount of waste, it is ready to receive another sorted amount of 
waste to process. In TC2_0.1.1, the process of the current amount of waste can take some time before the system can be 
ready for receiving another amount of sorted waste to process. In TC2_0.1.2, after processing a certain amount of waste, the 
information is displayed on the screen of the user. Then, the system is ready to receive another amount of sorted waste to 
process. In TC2_0.1.2.1, the process of the current amount of waste can take some time before the system can be ready for 
receiving another amount of sorted waste to process.

“TC3_0.1” – “TC3_0.1.1.1.1” are modified systems from “TC3_0” by adding some behaviors as follows. In TC3_0.1, after the 
slave is started, it can wait for some time before it starts doing its own work. When the slave finished doing its work, it 
displays information to the screen of user before being synchronized with the master. In TC3_0.1.1, when the slave finished 
displaying information to user’s screen, it can go back to do its own work. In TC3_0.1.1.1, when the slave finished displaying 
information to user’s screen, it can wait for some time before being synchronized with the master or doing its own work. 
In TC3_0.1.1.1.1, the slave can do its own work for some time before doing other works.

“TC4_0.1” – “TC4_0.1.1.1.1.1” are modified systems from “TC4_0” by adding some behaviors as follows. In TC4_0.1, when 
the channel finished providing feedback to the monitor thread, it needs to inform user about the status before being ready 
to send another message. In TC4_0.1.1, when the channel finished providing feedback to the monitor thread, it can be ready 
to send another message. In TC4_0.1.1.1, when the channel finished providing feedback to the monitor thread, it can send 
another message. In TC4_0.1.1.1.1, when the channel finished informing user about the status, it can provide feedback to the 
monitor thread again. In TC4_0.1.1.1.1.1, when the channel can be ready for sending a new message for some time before it 
actually sends the next message.

In TC5, although it is the same simple communication channel as TC4, different versions of M1 are tested as follows. 
In TC5_0.1, when the channel finished providing feedback to the monitor thread, it needs to inform user about the status 
before being ready to send another message or providing feedback to the monitor thread again. In TC5_0.2, after sending 
a message, the channel can wait for some time before providing feedback to the monitor thread. In TC5_0.2.1, when the 
channel finished providing feedback to the monitor thread, it needs to inform user about the status before being ready to 
send another message. TC5_0.2.1.1, when the channel finished informing user about the status, it can provide feedback to 
the monitor thread again. In TC5_0.2.1.1.1, when the channel is ready to send another message, it can provide feedback to 
the monitor thread.

Finally, similar to TC5, TC6 are tested with different versions of M1 as follows. TC6_0.1 is the same as TC5_0.2.1 in TC5. 
TC6_0.1.1 is the same as TC5_0.2.1.1 of M1 in TC5. TC6_0.1.1.1 is the same as TC5_0.2.1.1.1 of M1 in TC5. In TC6_0.1.1.1.1, the 
channel provides feedback to the monitor thread for some time before doing other works. In TC6_0.1.1.1.1.1, the channel can 
be ready for sending a new message for some time before it actually sends the next message.

In Table 6, “EQ”, “I”, “T”, “Time(ms)”, and “Mem (B)” are the number of equivalence queries, initial and transition mem-
bership queries, time (in milliseconds), and memory (in bytes) required to regenerate an assumption after reusing the first 
assumption, respectively. |L(AR O )| and |L(ARN )| are the size of the corresponding languages of the assumptions regenerated 
by CBAG algorithm and LWAG algorithm, and a minus sign (“-”) means that the assumption did not need to be regenerated 
after M1 modified because the modified M ′

1 of M1 already has L(M ′
1) ⊆ L(ARN). Similar to the cases in the previous ex-

periment, we calculated |L(AR O )| and |L(ARN )| by counting the number of traces in |L(AR O )| and |L(ARN)| with the bound 
shown in the “B” column of Table 5.

From the experimental results shown in Table 6, we can see that when using CBAG algorithm, in 26 out of 28 test cases, 
we still need to regenerate the assumption after M1 is modified. In contrast, when using LWAG algorithm, in 26 out of 28 
test cases, we do not need to regenerate the assumption after M1 is modified. This result implies that LWAG algorithm and 
framework reduce the number of times assumptions must be regenerated after M1 evolves and shows they can reduce the 
cost of modular verification of the modified CBS. The memory usage in both cases (using assumptions generated by CBAG 
algorithm or using assumptions generated by LWAG algorithm) is similar.

6.3. Discussion

Although both LWAG algorithm and the proposed framework are presented for software with two components, the 
method can be extended to be applied for larger systems (i.e., M = M0 ‖ M1 ‖ ... ‖ Mn , where n ≥ 2) as discussed in re-
searches of Chen et al. [13], Hung et al. [32], and Lin et al. [41]. On one hand, the assume-guarantee rule can be applied 
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recursively as follows: {M0 ‖ A1 � π ; M1 ‖ A2 � A1; ...; Mn−1 ‖ An � An−1; Mn � An} =⇒ M = M0 ‖ M1 ‖ ... ‖ Mn � π . This 
method of applying LWAG algorithm has a high complexity since many assumptions need to be learned. On the other hand, 
the given system M can be partitioned into two higher level components H0 = M0 ‖ ... ‖ Mi and H1 = Mi+1 ‖ ... ‖ Mn with 
0 ≤ i < n to fit the assume-guarantee rule. For a given CBS M , the evolution can occur on some components of M . When 
applying the proposed framework for M , we divide M into two higher level components H0 which contains unchanged 
components and H1 which contains modified components. The application of the framework for M contains similar steps 
as described in Section 5 because we only care about the modified component H ′

1 of H1.
When carrying out experiments, because of the limitations of test systems and the computing power of the experimen-

tal environment, we only performed experiments using some small systems. The results show considerable potential for 
applying the proposed method to practical systems regarding the following aspects.

• The maximum values of |X0| and |X1| are 4. This means that these test cases can represent systems combined from 
components and properties that have up to 24 = 16 states. As a result, we can verify software systems in which their 
maximum sizes can be size of component 0 × size of component 1 × (size of property + 1) = |C0| × |C1| × |perr | =
24 × 24 × (24 + 1) = 4352 [35], where C0, C1, and p are represented by LTS. In addition, we care only about observable 
actions of the components. This allows us to apply the proposed method to practical systems that have complex internal 
implementations but have a limited number of observable actions, such as STS [47] and PLC [54]. This experimental 
results indicate the reliable effectiveness when applying LWAG algorithm and the proposed framework to large scale 
systems in practice.

• Although only some small test cases were used in the experiment, they clearly show that LWAG algorithm generates 
weaker assumptions than those generated by CBAG algorithm. These test cases also show that the assumptions gener-
ated by LWAG algorithm can reduce the number of times that assumptions must be regenerated to verify of evolving 
software. Although the time saved each time an assumption does not need to be regenerated is small, our approach can 
be applied many times during the software life-cycle because change can occur at any time in any phase of the software 
development process. As a result, the obtained benefit from our approach grows over time. Using this approach, the 
framework is effective for verifying practical software.

• When testing with a large test case, such as test case 6 (T C6), the time needed to regenerate assumptions becomes 
greater. Consequently, reducing the number of times that an assumption needs to be regenerated would accelerate 
many software reverification efforts. Once again, this result shows the effectiveness of the proposed framework when 
applied to evolving software verification.

• The verification complexity depends on both the number of transitions inside M0 and M1 and the number of variables 
in X0 and X1 to encode the system. For the four systems TC1, TC2, TC3, and TC4 which have 3 to 4 transitions in 
both M0 and M1, there is not much difference in the verification running time. The reason is that when encoding a 
given system, each transition will be encoded into one DNF predicate in the transition function while CDNF algorithm 
complexity depends on the number of DNF and CNF predicates in the Boolean function to be learned. With the same 
system of the simple communication channel, it is much faster when using two Boolean variables to encode both 
components M0 and M1 (i.e., TC4) than that when using three Boolean variables (i.e., TC5) and when using four Boolean 
variables (i.e., TC6). The reason is that the complexity of algorithms implemented in the teacher depends on the number 
of Boolean variables in the system under check. This result gives us a suggestion that we should use the minimum 
number of Boolean variables to encode the system under checking for the best verification speed.

• In the proposed framework shown in Section 5, we assume that M0 is a type of static framework and that M1 is a 
business component subject to change during the software life cycle. Under this hypothesis, we can reuse the weaker 
assumptions generated by LWAG algorithm in the framework when M1 is modified. In addition, effectively decomposing 
a given software application into components is another major problem when working with assume-guarantees specif-
ically and component-based software in general. This problem is outside the scope of this research paper. However, we 
are aware of the problem and will consider addressing it in future research.

7. Related works

Several existing papers on evolving software verification are relevant to our research [11,13,23,27,31–35,44].
In 2010, Chen et al. proposed a purely implicit solution to the contextual assumption generation problem in assume-

guarantee reasoning [13]. However, this paper did not consider the case in which the software component has been 
modified. Instead, when a component has been modified, the assumption–generation method must be executed again from 
the beginning to regenerate the assumptions for the entire modified system. In contrast, our paper focuses on the context of 
component change to improve CBAG algorithm [13]. Our target is to reduce the number of assumption regenerations when 
the component is modified by generating weaker assumptions that can be reused more often than those generated by CBAG 
algorithm.

In 2016, He et al. proposed a fine-grained learning technique for regression verification for component-based soft-
ware [27]. Although He et al.’s technique was an excellent idea and garnered good experimental results, it was different 
from our paper in the following three aspects.
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First, when performing the initial verification for component-based software, the key idea of the fine-grained learning 
technique was to learn each of the subpredicates of the assumption to be generated in a separated learning instance. 
The candidate was the combination of all subcandidates and submitted to the teacher. Obviously, this approach does not 
reduce the overall computation cost of the learning progress. Instead, the fine-grained learning technique achieved faster 
speed due to the simultaneous learning of the subpredicates of the assumption to be generated. It generated the same 
assumption as the one generated by CBAG algorithm [13]. In contrast, LWAG algorithm is target toward generating a weaker 
assumption that can be reused more effectively for verification when the software evolves. To generate weaker assumptions, 
the algorithm needs to process more. Therefore, the complexity of LWAG algorithm is greater than that of CBAG algorithm.

Secondly, when performing regression verification for the modified software, the method proposed by He et al. [27]
always needs to generate new assumptions even for small evolutionary changes by regenerating the corresponding subpred-
icates of the assumption to match the changed subpredicates of the software component. However, our proposed framework 
does not need to regenerate the assumptions for small changes in the modified component because the assumption gener-
ated by our method is weaker than the one generated by Chen’s method [13].

Lastly, He et al. assumed that the component models are decomposed into smaller subpredicates [27]; however, that is 
not an easy task in practice in terms of time or the algorithm complexity required. Moreover, when performing regression 
verification, the method proposed by He et al. [27] needs to compare each of the subpredicates of the system both before 
and after change. This is also not easy in practice with regard to time complexity. In contrast, the assumption generation 
method and the framework for verifying modified software proposed in this paper use the component models directly and 
effectively.

Groce et al. proposed a method called Adaptive Model Checking (AMC) that used inaccurate and updated models to 
perform verification as they were refined [23]. Nonetheless, the model used in AMC is the whole system model. Thus, 
when verifying the modified system, the state explosion problem may occur, particularly when checking large-scale systems. 
Moreover, AMC uses automatons to describe the system under checking. While we share the idea of verification of evolving 
software with this previous paper, our paper uses an implicit representation of the CBS, focuses only on the modified 
components and attempts to reuse previous verification results when performing reverification.

Chaki et al. focused on checking component substitutability from the verification viewpoint directly [11]. The paper also 
proposed an algorithm to verify the evolving system dynamically. We share the motivation of this paper concerning evolving 
systems. Our proposed framework can be used for all types of change. Moreover, the proposed framework is simpler than 
the method proposed by Chaki et al. [11]. In addition, we use an implicit representation of the CBS, while Chaki used an 
automaton representation.

Hung et al. proposed a method to optimally generate the minimized assumption for assume-guarantee reasoning [31–
35]. This assumption can be used to recheck a modified system at a much lower cost [31]. However, because the cost to 
generate minimized assumptions is very high, the method is not practically applicable to large-scale systems [35]. These 
studies also proposed an efficient framework for reverifying modified CBS and were also based on the idea of reusing the 
previous verification results to reduce the assumption regeneration cost [32,33]. We share the motivation of these studies to 
reduce verification cost when rechecking modified systems by reusing the previous verification results. That is, we reuse the 
previous assumption as the starting point for regenerating the assumption when rechecking a modified system. However, 
we use weaker assumptions than those generated by CBAG algorithm to reduce the number of times assumptions must be 
regenerated while Hung used minimized assumptions [32]. In addition, we use implicit system representations while Hung 
used automata to model them. These differences make our method faster than the one proposed by Hung and also make it 
applicable to large-scale systems.

In 2014, Menghi proposed an approach to extend classical verification algorithms to consider incomplete and evolving 
specifications [44]. His paper attempted to ensure that after any change, only the part of the system affected by the changes 
needed to be rechecked to avoid reverification from scratch. This paper extended various existing modeling formalisms to 
express incompleteness. We share the idea of reusing the previous verification results when rechecking modified systems 
to avoid rechecking the entire system from the scratch; however, we focus on using an implicit CBS representation during 
verification and on reducing the number of times assumptions must be regenerated.

Chaki and Strichman proposed three optimizations to the L∗ based automated Assume-Guarantee reasoning algorithm for 
the compositional verification of concurrent systems [12]. The paper suggested an optimization that uses some information 
already available to the teacher to avoid many unnecessary membership and candidate queries. However, this used a labeled 
transition system specification and did not consider the software evolution context. We use an implicit software specifica-
tion, improve the assumption generation method proposed by Chen et al. [13], and apply it in the context of software 
evolution to provide a greater reduction of the regression verification cost.

8. Conclusion

In this paper, we presented an effective framework for rechecking evolving software using LWAG algorithm with an 
improved technique for answering membership queries during the assumption learning process. Although LWAG algorithm 
has a greater time complexity than does CBAG algorithm, it can generate local weakest assumptions to reduce the number 
of assumption regenerations when rechecking evolving software. An implemented tool and experimental results are also 
presented that allows comparing both assumption generation algorithms and assumption regeneration processes for evolving 
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systems. The experimental results show that the improved assumption generation algorithm generates weaker assumptions, 
at the cost of a longer execution time. However, in the long run, the weak assumptions reduce the cost for reverifying 
evolving systems. Some discussions concerning the experiments are provided in the paper.

Although the experiments in this study were conducted with only small evolving systems, we plan to apply the algo-
rithm and framework to larger and to practical systems to show their usefulness. With large software in practice, in which 
the cost of each reverification becomes larger, (as shown in test case T C4_v0 in Table 5), being able to reduce the number 
of assumption regenerations plays a key role in verifying modified software. In addition, LWAG algorithm generates only 
the locally weakest assumption among all the possible assumptions generated by the backtracking algorithm, as shown in 
Lemma 6. For the future work, it is focused on generating the globally weakest assumption. This globally weakest assump-
tion will play an even more important role in reducing the verification cost in an evolving software context. In addition, 
as discussed in Section 6.3, we are also working on a method that can divide a predefined component-based software into 
components to effectively apply assume-guarantee verification.
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