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Abstract

This paper describes a system developed to
summarize multiple answers challenge in the
MEDIQA 2021 shared task collocated with
the BioNLP 2021 Workshop. We present
an abstractive summarization model based
on BART, a denoising auto-encoder for pre-
training sequence-to-sequence models. As
focusing on the summarization of answers
to consumer health questions, we propose a
query-driven filtering phase to choose useful
information from the input document automat-
ically. Our approach achieves potential results,
rank no.2 (evaluated on extractive references)
and no.3 (evaluated on abstractive references)
in the final evaluation.

1 Introduction

In the past several decades, biomedicine and hu-
man health care have become one of the major
service industries. They have been receiving in-
creasing attention from the research community
and the whole society. The rapid growth of volume
and variety of biomedical scientific data make it an
exemplary case of big data (Soto et al., 2019). It is
an unprecedented opportunity to explore biomedi-
cal science and an enormous challenge when fac-
ing a massive amount of unstructured and semi-
structured data. The development of search engines
and question answering systems has assisted us in
retrieving information. However, most biomedi-
cal retrieved knowledge comes from unstructured
text form. Without considerable medical knowl-
edge, the consumer is not always able to judge the
correctness and relevance of the content (Savery
et al., 2020). It also takes too much time and labour
to process the whole content of these documents
rather than extracting the useful compressed con-
tent. Automatic summarization is a challenging
application of biomedical natural language process-
ing. It generates a concise description that cap-
tures the salient details (called summary) from a

more complex source of information (Mishra et al.,
2014). Summarization can be particularly bene-
ficial for helping people easily access electronic
health information from search engine and ques-
tion answering systems.

MEDIQA 20211 (Ben Abacha et al., 2021) tack-
les three summarization tasks in the medical do-
main. Task 2- Summarization of Multiple An-
swers challenge aims to promote the development
of multi-answer summarization approaches that
could simultaneously solve the aggregation and
summarization problems posed by multiple rele-
vant answers to a medical question.

There are two approaches to summarization: ex-
tractive and abstractive. Extractive summarization,
i.e., choose important sentences from the original
text, is extensively researched but have several lim-
itations: (i) it is unable to keep the coherence of
the answer, (ii) the information compressed may
be incomplete because information may take many
sentences to expose, and (iii) it must include non-
relevant part of a relevant sentence. Recently, the
research has shifted towards more promising ap-
proaches, i.e. abstractive summarization, which
can overcome these problems give higher preci-
sion than extractive summaries (Gupta and Gupta,
2019). Abstractive text summarization is the task
of generating a short and concise summary that cap-
tures the salient ideas of the source text. The gen-
erated summaries potentially contain new phrases
and sentences that may not appear in the source
text. Abstractive summarization helps resolve the
dangling anaphora problem and thus helps gener-
ate readable, concise and cohesive summaries. In
abstractive summary, we can merge several relate
sentences or make them shorter, i.e., removing the
redundancy part.

Our proposed model for the multi-answer sum-
marization task follows abstractive summarization

1https://sites.google.com/view/
mediqa2021
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approaches. We try to process original answers
as a shorter representation while preserving in-
formation content and overall meaning. We take
advantage of BART, a pre-trained model combin-
ing bidirectional and auto-regressive transformers
(Lewis et al., 2020). We construct an architecture
with two filtering phases to choose the more con-
cise input for BART. Since the summary should
be question-oriented, the coarse-grained filtering
phase removes question-irrelevant sentences. The
fine-grained filtering phase is then used to cut-off
noise phases.

The remaining of this paper is organized as fol-
lows: Section 2 gives brief introduction of some
state-of-the-art related work. Section 3 describes
task data and our proposed model. Section 4 is
the experimental results and our discussion. And
finally, the Conclusion.

2 Related work

Because of the complexity of natural language, ab-
stractive summarization is a challenging task and
has only been of interest in recent years. Gerani
et al. (2014) proposed an abstractive summariza-
tion system for product reviews by taking advan-
tage of their discourse tree structure. A impor-
tant subgraph in the discourse tree were then se-
lected by using PageRank algorithm. A natural
language summary was then generated by applying
a template-based NLG framework.

According to current research trends, witnessing
the success of deep learning in other NLP tasks, re-
searchers have started considering this framework
as an promising solution for abstractive summa-
rization. Nallapati et al. (2016) used an atten-
tional encoder-decoder recurrent neural networks
and several models such as key-words modeling,
sentence-to-word hierarchy structure, and emitting
rare words, etc. Song et al. (2019) proposed an
LSTM-CNN based ATS model to construct new
sentences by exploring fine-grained phrases from
source sentences (of CNN and DailyMail) and
combining them. Gehrmann et al. (2018) used
a bottom-up attention technique to improve the
deep learning model by over-determining phrases
in a source document that should be part of the
summary. Inspired by the successful application of
deep learning methods for machine translation, ab-
stractive text summarization is specifically framed
as a sequence-to-sequence learning task. BART is
a transformer-based pretrained denoising encoder-

decoder model that is applicable to a very wide
range of end tasks, includes summarization. It com-
bines a bidirectional encoder and an auto-regressive
decoder (Lewis et al., 2020). There are several
BART-based model, example includes DistilBart2

and Question-driven BART (Savery et al., 2020).
Question-driven BART re-trained BART on ob-
jectives designed to improve its general ability to
understand the content of text (including document
rotation, sentence permutation, text-infilling, to-
ken masking and token deletion) and fine-tuned
the model for biomedical data. Another recently
published abstractive summarization framework is
PEGASUS (Zhang et al., 2020), it masks impor-
tant sentences and generates those gap-sentences
from the rest of the document as an additional pre-
training objective.

3 Materials and Methods

3.1 Shared task data
The shared task suggested to use the MEDIQA-
AnS Dataset (Savery et al., 2020) as the training
Data. The validation and test sets includes the orig-
inal answers are generated by the medical question
answering system system CHiQA3 . In these data
sets, extractive and abstractive summaries are man-
ually created by medical experts. Table 1 gives our
statistics on the given datasets (see (Ben Abacha
et al., 2021) for detailed description of shared task
data).

Table 1: Statistics of the datasets.

Statics aspects Training Valid-
ation TestArticle Section

Question 156 156 50 80
Average
A per Q 3.54 3.54 3.85 3.80
T per A 152.35 532.83 219.44 240.22
T per SSum 70.51 70.51 - -
T per MSum 119.04 119.04 81.18 -
Compression radio
SSum 0.07 0.32 - -
MSum 0.04 0.13 0.15 -

A: Answer, Q: Question, T: Token
SSum: Single-answer summary,
MSum: Multi-answer summary.

3.2 Proposed model
As a team participating in MEDIQA - Task 2,
we proposed an abstractive summarization sys-

2https://huggingface.co/sshleifer/
DistilBart-cnn-12-6

3https://chiqa.nlm.nih.gov
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Figure 1: The proposed ‘Standing-on-the-Shoulders-of-Giants’ model.

tem based on BART - the denoising sequence-to-
sequence model. We designate this as a ‘Standing-
on-the-Shoulders-of-Gi ants’ (SSG) model because
BART is the recently state-of-the-art model for ab-
stractive summarization task. To improve the per-
formance, we propose to apply two filtering phases
to make the condensed question-driven input for
BART. In addition, the BART-based model only
receives a limited length document (with 1024 to-
kens), and our original input is too large to fit. Our
model requires a cut-off strategy to reduce length.
The overall architecture of the system is described
in Figure 1 which includes five main phrases: pre-
processing, coarse-grained filtering, fine-grained
filtering phase and BART-based summary genera-
tion.

3.2.1 Pre-processing

The pre-processing phase receives question Q and
a set of corresponding answers (documents) D =
{di}ni=1 as the input. The pre-processing phase
removes html tags, non-utf-8 characters and re-
dundant signs/spaces. scispaCy (Neumann et al.,
2019), a powerful tool for biomedical natural lan-
guage processing, is also used for the typical pre-
processing steps (i.e. segmentation and tokeniza-

tion).

3.2.2 Coarse-grained filtering

The original BART summarizes a text by gener-
ating a shorter text with the same semantic. It
processes all information with the same priority
and does not take the question into account. There-
fore, its output may lose the function of answering
the question. We orient BART to question-driven
by filtering out less valuable sentences, increasing
the rate of question-related sentences in the BART
input. There are two strategy to choose sentences
that are highly related to the questions:

(i) Top-n query-driven sentences: The main
idea of this method is to choose sentences that
most likely can answer the questions. We calculate
the cosine similarity between two bioBERT embed-
ding vectors (Lee et al., 2020) of the question and
each sentence. We assume that the sentence with
higher cosine similarity might be a good answer for
the question. The top-n sentences of each answer
with the highest scores are kept with their original
orders.

(ii) Top-n query-driven passages: Some pas-
sages are structured in an deductive manner (e.g.,
several explanatory sentences follow after a stated



sentence) or inductive (e.g., the last sentence is the
conclusion of previous sentences). Extracting these
whole text pieces may help an important sentence
have some adjacent sentences to clarify or sup-
port it, making it more coherence and informative.
There are three factors to determine an important
passage:

• Central sentence: A passage is chosen if and
only if it has at least one sentence likely an-
swering the question. Cosine similarity with
BioBERT embedding vector is used to find
these sentences.

• Passage length: A passage must not exceed k
sentences.

• Break point: If the similarity between two
adjacent sentences is lower than a pre-defined
threshold, a breakpoint is addressed.

• Passage score: is calculated by the sum of its
sentences similarity scores.

Top-n best passages are then combined with
their original order.

In addition to two aforementioned strategies, we
also use two other simple strategies as the baseline:

(iii) n first sentences: Taking n first sentences
from each answers.

(iv) n random sentences: Taking n random sen-
tences from each answers.

In which, the number of passages/sentences is
not limited which satisfies that the whole length of
final document is fit of smaller than the allowed
input size of BART model. It should take as much
information as possible.

3.2.3 Fine-grained filtering
The nature of BART is to convert one piece of text
into another with the same semantics. If the input
contains too much noise and is difficult to under-
stand, it may negatively affect the output quality.
Therefore, we try to filter out the noise phrases to
get the most concise input to BART, thereby getting
better results. Through the data surveying, there are
two approaches to reduce noises and ambiguous
information:

(i) Biomedical text uses many abbreviations, of
which many do not follow a standard convention
and are only used locally within the scope of au-
thors’ articles. Unfortunately, these local abbre-
viations might be the keywords and lead to the
ambiguous to the system. We identify and generate

the full form of all local abbreviation use the Ab3P
tool (Sohn et al., 2008).

(ii) we apply some rules to cut redundant ele-
ments of sentences. Examples include:

• Cut-off listed text that follows ‘such as’.

• Cut-off text that follows ‘for example’.

• Cut-off text that appears in the brackets ().

• Cut-off text that follows a colon and is not in
enumerated form.

3.2.4 BART-based summary generation
All sentences are selected and cut-off from afore-
mentioned filtering phases are then combined into
a single document. This is the input to the BART-
based summary generation phase.

BART is implemented as a standard sequence-to-
sequence Transformer-based model. It is a denois-
ing autoencoder that maps a corrupted document
to the original document it was derived from (Lee
et al., 2020). Special power of this model is that it
can map the input string and output string with dif-
ferent lengths. BART consists of two components:
Encoder and Decoder that combines the advantages
of BERT and GPT.

Encoder: BART uses a bidirectional encoder
over corrupted text taken from BERT (Devlin et al.,
2019). As the strength of BERT lies in capturing
two-dimensional contexts, BART can encode the
input string in both directions and get more context
information. In the abstractive text summarization
problem, the input sequence is the collection of all
token in the answers. Each word is represented by
xt, where i is its ordinal. The ht hidden states are
calculated with the formula:

ht = f(W hh · ht−1 +W hx · xt) (1)

in which, the hidden states are computed by the
corresponding input xt and the previous hidden
state ht−1. Encoder vector is the hidden state at the
end of the string, calculated by the encoder. It then
acts as the first hidden state of the decoder.

Decoder: BART uses a left-to-right auto-
regressive decoder. Its decoder is similar to
GPT (Radford et al.) with the capability of self-
regression, can be used to reconstruct the input
noise. A stack of subnets is the element of the
RNN that predicts the output yt at time t. Each of
these words takes input as the previously hidden
state and produces its own output and hidden state.



For the abstractive text summarization problem, the
output sequence is the set of words of the summa-
rized answer. Each word is represented by yt where
i is the word order. The hidden state is calculated
by the preceding state. So, the hi hidden states are
calculated by the formula:

ht = f(W hh · ht−1) (2)

We compute the output using the corresponding
latency at the present time and multiply it by the
corresponding weight WS . Softmax is used to cre-
ate a probability vector that helps us to determine
the final output. The output yt are calculated by the
formula:

yt = softmax(WS · ht) (3)

BART uses Beam Search algorithm for decoding.

4 Experimental results

4.1 Evaluation metrics
We adopt the official task evaluations with ROUGE
scores (Lin and Och, 2004) including ROUGE-1,
ROUGE-2 and ROUGE-L. ROUGE-n Recall (R),
Precision (P ) and F1 between predicted summary
and referenced summary are calculated as in For-
mular 4, 5 and 8, respectively. Choosing correct
sentences help to increase ROUGE-n R and P .

ROUGE-n P =
|Matched N-grams|

|Predict summary N-grams|
(4)

ROUGE-n R =
|Matched N-grams|

|Reference summary N-grams|
(5)

ROUGE-L P =
Length of the LCS

|Predict summary tokens|
(6)

ROUGE-L R =
Length of the LCS

|Reference summary tokens|
(7)

ROUGE-L recall (R), precision (P ) and F1 are
calculated as in Formular 6, 7 and 8, respec-
tively. ROUGE-L uses the Longest Common Sub-
sequence (LCS) between predicted summary and
referenced summary and normalized by the tokens
in summary.

F1 = 2× R× R
P + R

(8)

4.2 Comparative models
We use the official results of the MEDIQA shared
task as a comparison to other participated teams
on the multi-answer summarization task. For a fur-
ther comparison, we also make the comparisons
with three state-of-the-art abstractive summariza-
tion models:

• The orginal BART (Lewis et al., 2020).

• DistilBart4: A very effective model for text
generation task release by HuggingFace.

• PEGASUS (Zhang et al., 2020) is state-of-the-
art abstractive summarization model provided
by Google AI.

4.3 Task final results and comparison
Based on the experimental results on the validation
set, we choose top-n query-driven passages as a
coarse-grained filter to run our official output. In
our model, Beam Search uses beamwidth = 5 and
uses sampling instead of greedy decoding. Beam
Search is stopped when at least 5 sentences finished
per batch. After two filtering phases, the input often
have 10-15 sentences and less than 1024 tokens.
On average, the total token in a summary is equal
to ∼75% of the number of tokens in the BART
input.

4.3.1 Official results of the multi-answer
abstractive summarization

Table 2 show the shared task official results of ac-
cepted competitors. ROUGE-2 F1 is used as the
main metric to rank the participating teams. We
also show several other evaluation metrics for fur-
ther comparison: ROUGE-1 F1, ROUGE-L F1,
HOMLS F1 and BERT-based F1. The organizers
offer two rankings, one on the extractive references,
the other on the abstractive references. Evaluated
on extractive references, our team is the runner-up.
On the evaluation using abstractive references, we
ranked third.

4.3.2 Comparison with other state-of-the-art
models

Table 3 shows the comparison between our pro-
posed model and two other state-of-the-art text gen-
eration models, i.e., DistilBart and Pegasus. Our
SSG model yields much better results than Distil-
Bart and PEGASUS in this data. Since both models

4https://huggingface.co/sshleifer/
distilbart-cnn-12-6
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Table 2: Official results of the MEDIQA 2021: Task 2 - Multi-Answer Summarization

Team ROUGE-1
F1

ROUGE-2
F1

ROUGE-L
F1 HOLMS BERTscore

F1
Evaluated on extractive references
paht_nlp 0.585 0.508 0.436 0.554 0.653
UETfishes 0.572 0.470 0.400 0.520 0.646
UCSD-Adobe 0.592 0.460 0.417 0.493 0.632
yamr 0.516 0.445 0.384 0.536 0.636
I_have_no_flash 0.523 0.422 0.360 0.542 0.615
Evaluated on abstractive references
paht_nlp 0.386 0.162 0.232 0.554 0.653
UCSD-Adobe 0.384 0.160 0.212 0.494 0.632
UETfishes 0.381 0.147 0.202 0.520 0.647
I_have_no_flash 0.384 0.133 0.222 0.478 0.615
yamr 0.271 0.131 0.160 0.388 0.636

Only show results of top-5 participated teams for each type of evaluation.
The highest results in each column are highlighted in bold.

Table 3: Comparison with other state-of-the-art mod-
els.

Model ROUGE-2
P R F1

DistilBART 0.0825 0.1031 0.0874
Pegasus 0.0401 0.0597 0.0450
Our SSG 0.0977 0.1274 0.1062
All results are reported on the validation data set.

are very strong competitors, our higher outcome
may because they are not suitable with the charac-
teristics of the data (biomedical domain, question-
driven answers).

4.4 Contribution of model components

We study the contribution of each model compo-
nent to the system performance by ablating each of
them in turn from the model and afterwards evalu-
ating the model on the validation set. We compare
these experimental results with the full system re-
sults and then illustrate the changes of ROUGE-2
F1 in Figure 2. The changes of ROUGE-2 F1
show that all model components help the system to
boost its performance (in terms of the increments in
ROUGE-2 F1). The contribution, however, varies
among components. The coarse-grained filtering
phase has the biggest contribution, while abbrevia-
tion processing and cut-off rules of the fine-grained
phase bring very small effectiveness. We also inves-
tigate the effectiveness of components/configures
in the BART-based summary generation. Compo-
nents that have a pronounced effect on the result
are shown in Figure 2 : Preventing 3-gram repeater,
sampling, early stopping and beam search. Pre-

venting 3-gram repeater and using sampling also
improves results.

(Fine-grained)
Cut-off rules

(Fine-grained)
Abbreviation

Coarse-grained 
filtering

0 0.01 0.02 0.03 0.04 0.05
ROUGE-2 F1 reduction (%)

(BART)
Early stopping

(BART)
Sampling

(BART) Preventing 
3-gram repeater

(BART)
Beam search

Figure 2: Ablation test results for model components.

Considering the results of three different ap-
proaches in the coarse-grained filtering phase (Fig-
ure 3), top-n question-driven passage seems the
most promised way. Other approaches do not take
advantages of the semantic relation between ad-
jacent sentences, which leads to losing important
information.

4.5 Error analysis

In order to improve the proposed model, we have
analyzed the output on the validation set to find
out problems that need to be taken into account.
All the evidence points to five biggest problems,
including content generalization, synonyms and
antonyms, paraphrasing, cosine similarity problem,
and aggressive cut-out strategy.



Figure 3: Comparison of different coarse-grained filter-
ing strategies based on ROUGE-2 scores.

The biggest problem with our proposal model
and other text summary models is the generaliza-
tion of the input content. In particular, for the
answer summary system, this issue is emphasized
more and more. The responses may contain a va-
riety of content related to the directional question.
However, the summary should draw conclusions
to answer that question. For example, in Ques-
tion #22, to answer the question ‘Is it safe to have
ultrasound with a defibrillator?’, our model per-
formed well that carried out the summary ‘Most of
the time, ultrasound procedures do not cause dis-
comfort. The conducting gel may feel a little cold
and wet. Current ultrasound techniques appear
to be safe.’ However, the expected outcome was

‘There are no known risks or contraindications for
ultrasound tests.’ For which, our model gets a 0.0
ROUGE-2 F1 score for this example.

Another problem is that golden data depends on
the style and language usage of the abstractor. The
writer may use different expressions, synonyms,
antonyms to paraphrase and summarise, leading to
the inconsistency of ground truth data. Take Ques-

tion #8 for example, the sentence ‘This treatment
leads to remission in 80% to 90% of patients’ is
paraphrased into ‘Remission is possible in up to
90% of the patients.’

The analysis process also raises some imperfec-
tions of the proposed model in sentence selection
and sentence cutting strategies. Cosine similar-
ity metric does not really perform well with doc-
uments containing many sentences. In particular,
many sentences contain important content but do
not have high similarity to the question. Besides,
fine-grained filtering strategies also filter some im-
portant information in the sentence. We leave these
problems to be addressed in future work.

5 Conclusion

This paper presents a systematic study of our ab-
stractive approach to question-driven summariza-
tion problem, specifically depending on MEDIQA
2021 - Task 2: Multi-answer summarization. We
present a model improved and optimized based on
BART - a state-of-the-art method for abstractive
summarization called SSG (Standing on the shoul-
ders of giants). The proposed model has a potential
performance, being the runner-up of the shared
task. Our best performance achieved a ROUGE-2
F1 is 0.470 evaluated on extractive summarization
references and 0.147 evaluated on abstractive sum-
marization references .

Experiments were also carried out to verify the
rationality and impact of model components and
the compressed ratio. The results demonstrated
the contribution and robustness of all techniques
and hyper-parameters. Besides, the error analy-
sis was made to analyze the sources of the errors.
The evidence pointed out some imperfection of
the sentence selecting strategy, the ranking score
combination, and the question analyzer. In further
works, there could be several ways: applying ma-
chine learning model, deeply question-analyzing,
sentence clustering, etc. applied to extend the abil-
ity of the model.

Our source code will be released publicly to sup-
port the reproducibility of our work and facilitate
other related studies.
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