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Abstract—Thanks to the rapid evolution of semiconduc-
tor technology, System-on-Chip (SoC) paradigm has be-
come one of the most common design methodologies for
quickly developing embedded systems to meet the high
demands of embedded applications. In this paper, we
present the design and implementation of a SoC platform
targeted to controlling and monitoring applications. This
proposed platform is composed of a 32-bit processor and
a dozen of common hardware interfaces, providing the
programmability and connectivity to peripheral devices
such as memories, LAN network, monitor, keyboard, ADC,
DAC, or other I/O devices. In addition, to increase the
flexibility of the system and to rapidly develop end-
user applications, we also deploy an application-specific
software framework with the robustness of a lightweight
kernel and real-time applet management. The system
model has finally been validated through the realization
of a remote control camera system.
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I. INTRODUCTION

N owadays, System-on-Chip (SoC) paradigm has
become very common in the design of embedded

systems, allowing full software/hardware to be integrated
into a single chip. In such embedded applications, SoCs
should provide high functional flexibility as well as
processing capability [1]. Thanks to the evolution of
semiconductor technology, system designers can inte-
grate more and more intellecture properties (IPs) into
a system to meet the needs of applications. However,

the growth of integration scale also leads to many new
challenges in SoC design such as performance, on-chip
communication, power consumption, and design cycles.
These factors definitely depend on the design principles,
design and implementation technologies.

To overcome these challenges, several ASIC plat-
forms of SoCs have been previously proposed in the
literatures as well as commercial products. However,
these platforms were developed for application-specific
systems and they have limitations on flexibility and con-
figurability. Even if we intend to improve those factors, it
will make the system more complex. In order to increase
the flexibility and reduce the complexity of embedded
systems, FPGA technology is obviously selected thanks
to its advantages such as scalability, reconfigurability,
rapid prototyping, short time-to-market, and low NRE
(non-recurrent engineering) cost [2].

In fact, FPGAs have recently become very popular
in implementing logic circuits. They can be used for
many types of applications such as rapid prototyping
platform [3], telecommunications [4], digital signal pro-
cessing [5]. The flexibility and scalability of FPGAs
have made them suitable for implementing embedded
SoCs, where a complete system can be implemented on
a single programmable chip. In this case, the soft-core
processor provided by manufacturers can be reused for
developing embedded systems. This soft-core processor
is a microprocessor which is fully described in software,
usually in an HDL (Hardware Description Language)
and can be synthesized and implemented on FPGAs.
One of the most advantages of the soft-core processors
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is that they can be easily customized to adapt the needs
of a specific target application.

For those reasons, we have developed an FPGA-
based SoC platform, named as CoMoSy (Controlling
and Monitoring System), using Xilinx MicroBlaze soft-
core processor. This platform is intently designed to be
used for a large range of embedded systems in con-
trolling and monitoring applications. With this platform,
application mapping processes will be much easier and
the production time will be significantly reduced. The
proposed platform and its design methodology will be
fully described in this paper, including both hardware
and software issues.

The remaining part of this paper is organized as
follows. Section II presents in detail the hardware archi-
tecture model and implementation of the proposed SoC
platform. Section III describes the application-specific
software framework which is specially developed for
the target hardware system. Section IV provides some
main experiments and obtained results. Finally, further
discussions and conclusions are given in section V.

II. PROPOSED HARDWARE ARCHITECTURE – DESIGN

AND IMPLEMENTATION

A. CoMoSy architecture design

As mentioned above, thanks to the flexibility and con-
figurability of FPGA technologies system designers have
many choices in architecture design for their embedded
systems. However, before mapping an application into
a targeted FPGA technology, the first thing should be
considered is the partitioning of software and hardware
parts. The software part can be built and executed on one
or more processor cores if needed while the hardware
part is modularized into particular functional blocks.
These funcational blocks can be developed from the
existing IP (Intellectual Property) cores provided by
FPGA suppliers or fully developed by designers. In ad-
dition, an application platform may have more than one
system configuration file (i.e. FPGA bitstream file and

software execution file), allocated in different memory
sections (using a ROM or a flash memory). They can
be selected to configure/reconfigure the FPGA device
at power-on/run-time for specific purposes. A better
hardware/software partitioning will produce a higher
efficiency for the targeted embedded system.

The second thing is to select a proper FPGA device in
order to fit the design. It means that the selected FPGA
device does not only provide enough logic cells for the
design but also has to meet the other requirements of the
design such as performance and processing capability.
For example, some Xilinx FPGA series can provide
either MicroBlaze soft-core processor or PowerPC hard-
core processor [6]. In this case, a high-performance
application might consider using PowerPC processor
rather than MicroBlaze processor because the hard-
core processor is obviously better in performance than
the soft-core processor. Otherwise, MicroBlaze soft-core
processor is more suitable for the applications in which
a higher level of flexibility and configurability is needed.

To develop embedded systems for controlling and
monitoring applications using Xilinx FPGA, we have
proposed a general architecture as described in Figure 1.
As requested by targeted applications, this platform is
composed of three kinds of functional units: processing
units, data acquisition units, and data visualization units.
The data acquisition units get data from either digital
devices or analog devices (e.g. a set of sensors) by
providing standard hardware input interfaces to have
connections with those devices. The MicroBlaze proces-
sor manipulates and processes the acquired data, gives
out decisions to control the periperal devices. In addi-
tion, some processed results are transferred to the data
visualization units, where the data can be represented
in many ways (text, graphic, light or sound) to build
friendly human-machine interfaces.

In general, CoMoSy is a 32-bit bus-based platform
using a MicroBlaze soft-core processor [7] as the central
processing unit. MicroBlaze is a RISC (Reduced Instruc-
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Figure 1. General Architecture of CoMoSy platform.

tion Set Computer) processor that modelled in HDL
to be implemented on Xilinx FPGAs. Some optional
function blocks integrated in this core are enabled to
accelerate the processing ability such as Floating Point
Unit (FPU), integer divider, integer multiplier, barrel
shifter. This processor core interacts with other IP cores
through IBM CoreConnect PLB bus system [8]. In
addition to the processor, we have developed a dozen
of IP cores. Some Xilinx IP cores have been reused to
reduce design time and the others have been completely
developed at the laboratory. The rest modules of the
platform can be described as follows.

• MPMC core is a multi-port memory controller
used to interface with DDR SDRAM. The MPMC
unit provides three channels for independently
accessing data on DDR SDRAM, where two of
them serve as data cache channel and instruction
cache channel of MicroBlaze processor, denoted
as DXCL and IXCL respectively. The remaining
channel (PLB_0) provides a fast channel to transfer
program data and instructions when executing.
MPMC unit usually operates at a higher frequency

than the processor core.

• Multi-channel external memory controller unit is
another memory controller used to connect the
system with a flash memory. This memory is
intended to store the FPGA bitstream files and/or
software execution files. It sometimes can be used
as a file system device.

• MDM (MicroBlaze Debug Module) unit is a hard-
ware debug module used to debug the operations
of MicroBlaze processor by using JTAG (Joint Test
Action Group) interface.

• Timer unit is a 32-bit programmable interval timer
which is required by almost software kernels for
establishing software timers and task schedulers.

• Interrupt controller core handles the interrupt sig-
nals arising from peripheral blocks and notifies
the processor core by driving processor’s interrupt
signal. In the proposed platform, there are two in-
terrupt sources, timer interrupt and Ethernet MAC
interrupt.

• Ethernet MAC unit is a 10/100Mbps Ethernet Me-
dia Access Controller. This controller is compatible
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with IEEE Std. 802.3 specification.

• UART, SPI, PS/2 units provide serial data links
to connect with several devices such as RS-232
ports, analog-to-digital converters (ADCs), digital-
to-analog converters (DACs), PS/2 keyboard, PS/2
mouse, etc.

• GPIO units provide bi-directional digital ports for
discretely connecting to usual devices such as
LEDs, LCDs, switches, buttons, etc. The port-
width of each GPIO unit can be customized by
a parameter of the core.

• VGA unit is a special core which is completely
designed at our laboratory in order to provide
a friendly interface to VGA-compatible monitors.
Although this unit is individually developed at the
laboratory but it can be used for next FPGA-based
system developments thanks to its compatibility to
Xilinx FPGA design flow. The design of this unit
will be described in detail in the next sub-section
as a case study.

In the proposed platform, a master core (e.g. proces-
sor) accesses to slave cores using memory-mapped I/O
methods. The address bus is shared for both memory
controllers and the other slave devices. Thus, each unit
in the system has its own address space determined by
two parameters: base address and high address. The base
addresses are automatically generated by Xilinx design
tool while the high addresses are calculated from the
memory/address size of IP cores and their corresponding
base addresses.

As a simple architecture, the hardware model uses
only one bus channel for interconnecting processing
components (i.e. IPs) on the system. A new component
can be easily integrated into the system thanks to the
help of the design tools. Of course, the new component
has to be compatible with PLB bus interface. However,
the growth of the hardware architecture may affect the
response ability of the bus as well as the reliability
of the system. In this case, system designers should

consider creating several bus channels, for example, one
channel for low speed components and another for high-
speed components. Hence, the system is really flexible
and scalable on the change of the hardware architecture
model.

B. VGA unit

To build a friendly human-machine interface for the
platform, in addition to simple text-based LCDs we have
developed a VGA monitor controller unit (called VGA
unit) to increase the efficiency in displaying text as
well as graphics. The architecture of this VGA unit is
designed as described in Figure 2 and modelled using
VHDL language. Then, it is implemented using Xilinx
design flow [9] in order to make the design compatible
to Xilinx design methodology, and therefore it can be
used for the next designs. The VGA unit will display
an image on the screen by driving the color signals and
synchronization signals of the VGA interface according
to the pixel data of the image.

Figure 2. Proposed architecture of VGA unit.

The size of an image is usually larger than memory
resources available on FPGAs, for example, a 640×480
pixels at 24bpp raw image has a size of 912.6Kbytes

while the Spartan-3E family has a limit of 81Kbytes

block RAM [10], the image therefore cannot be entirely
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stored inside the VGA unit. The image should be held on
an off-chip memory (e.g. SDRAM) and transferred into
this VGA unit by small data blocks during the display
time.

There are two solutions that could be addressed to
handle the data transfer operations. The first solution is
to attach a bus master interface to the VGA unit to be
able to access data on the external memory. The second
one is to use a Direct Memory Access (DMA) core to
co-operate with the VGA unit. In the second case, VGA
unit does not need to include any bus master interface, it
receives the data transmitted from DMA core. However,
the processor has to initiate the operation of the DMA
core whenever the VGA unit wants to refresh the screen.
For that reason, we prefer the first solution to gain the
flexibility and independency of the VGA unit.

One of the most challenges in designing VGA unit
is to determine the depth of memory buffer within the
core and the buffering strategy because these parameters
will affect the cost-efficiency and display quality of the
system on a specific display resolution. In this work,
we have taken into account these constraints for VGA
standard. In consequence, the architecture of VGA unit
(presented in Figure 2) is composed of:

• PLB Master interface with burst transfer mode is
usually used for transferring data from the external
memory to FIFO block.

• PLB Slave interface serves the reading/writing
operations between the processor and VGA unit.

• Three 32-bit registers contain the command data
and the properties of the images such as width,
height, base address.

• VGA BRAMS/FIFO is a 256bytes dual-port mem-
ory buffer for storing a bulk of data.

• VGA Data Aligner synchronizes data between
FIFO block and VGA Interface block.

• VGA Interface drives the synchronization signals
of the monitor.

• VGA Controller is reponsible for VGA timing and
the operations of the whole VGA unit.

There are two clock domains in this design: system
clock (sys_clk) and pixel clock (pix_clk). The pixel clock
absolutely depends on the display resolution and the
refresh rate of the screen specified by standards (see
Table I). Even though two clock signals are independent,
the system clock must be higher than the pixel clock to
ensure that the appearance is smooth (without flickering)
and the overhead on bus traffic is eliminated.

Table I
DISPLAY STANDARD SPECIFICATION

Display standard Pixel frequency (MHz)

VGA 640× 480 @60Hz 25.175

SVGA 800× 600 @60Hz 40.000

XGA 1024× 768 @60Hz 65.000

WXGA 1280× 800 @60Hz 83.460

The VGA unit is then modelled in VHDL language
and simulated by using ModelSim simulator (Mentor
Graphics). The synthesis results on Spartan-3E device
show that the VGA unit can operate at a speed up to
160MHz. The unit is thus possible to provide higher
resolutions than VGA standard such as XGA or WXGA.

C. Implementation

In this section, we present the implementation of
the proposed platform on Xilinx Spartan-3E device to
evaluate some typical metrics of the system. From the
system specifications described above, the design and
implementation can be completely managed by Xilinx
Platform Studio environment [9]. All required peripheral
hardware blocks are integrated into the system and
they are configured to a proper operation mode. Then,
we let the tool automatically perform synthesizing and
implementing processes with provided input constraints.
Finally, the design is verified again in order to check
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whether it meets the system specifications, timing and
power consumption issues before being loaded into
FPGA devices.

Table II shows the resource utilization on Spartan-
3E XC3S500E device, distributed on the logic cells
(including slides and look-up-tables); Input/Output pads
(I/Os); primary RAM blocks (BRAMs); Digital Clock
Manager blocks (DCMs), and hard-macro multipliers
(MULTs). Obviously, the whole design is fit on Spartan-
3E XC3S500E, most logic elements and BRAMs are
used (more than 80% of available resources). The design
also meets the timing constraints to operate at 50MHz.

Table II
RESOURCE UTILIZATION (SPARTAN-3E-XC3S500E)

Name Available Used Utilization

Logic 9312 7616 82%

I/Os 232 86 37%

BRAMs 20 19 95%

DCMs 4 2 50%

MULTs 20 7 35%

In addition to hardware overhead, power consumption
is another important parameter in embedded system de-
sign. The power consumption of our system is estimated
using XPower Analyzer tool. Table III summarizes two
metrics of power consumption, total quiescent power
and total dynamic power. Because we implement our
design using FPGA technologies, the only concerned
parameter is the dynamic power of the design. Most of
the quiescent power depends on the target technologies
and we cannot change.

The distribution of power consumption of the design
is also shown in Figure 3. The power consumed on
I/Os is the most considerable (80% of the whole system
power consumption) because the I/Os usually require
higher current than the other entities.

Table III
POWER CONSUMPTION

Type Power (mV )

Total quiescent power 105

Total dynamic power 643

Total consumed power 748

Figure 3. Power consumption distribution.

III. SOFTWARE SYSTEM

In order to adapt to the change of the hardware
architecture, we develop a scalable and reliable software
framework for the proposed hardware. The main pur-
pose of this framework is to provide mechanisms for
managing hardware resources and user applets. To do
this, we has adopted several open software libraries,
modified and integrated them to build the software
framework as presented in Figure 4. In this software
framework, the most important part is the kernel based
on Xilkernel [11]. This kernel can support the most
common POSIX APIs (Portable Operating System In-
terface – Application Programming Interface) [12] such
as thread management, thread synchronization services,
and thread communication services.

In this software framework, the lowest layer is driver
layer. This layer is composed of Xilinx IP drivers (used
for Xilinx IP cores) and VGA driver (used for our
hardware design of VGA unit). Upon the drivers is the
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Figure 4. Software development framework.

kernel and library layer. In this layer, beside the kernel
we integrate several popular libraries such as standard
C library, JPEG decoder library [13], TCP/IP protocol
stack library [14] to help software designers to quickly
build their applications. In higher layers, we develop
an applets management layer to handle all user applets.
Each applet is a small application performing a specific
function, described by the following object:

typedef struct s_req_handler {

/* applet/request ID */

unsigned int m_req_id;

/* callback function */

void (*m_callfunc)(void);

} req_handler_t;

In addition, to help the users to easily interact with
the system, the applets management layer is designed
to be able to create a command-line interface where
users can type a command to execute the corresponding
applets. The applets management layer has been built
with three threads: GPIO handler thread, keyboard han-
dler thread, and request handler thread (see Figure 5).
The GPIO handler thread performs monitoring states of
digital input ports and maps each state to a specific re-
quest ID (identification). Similarly, the keyboard handler
thread receives user commands from keyboard and maps
each of them to a specific request ID. These request IDs
are then sent to the request handler thread to specify

which applet would be invoked. Thanks to this software
model, software designers are able to quickly develop
end-user software applications and embed them to the
rest of system without considering the reliability of the
software system.

Figure 5. Sequence diagram of the applet management.

IV. EXPERIMENTS

Verification and validation are two key processes in
system design flow and take much time in the design
cycle. The using existing resources (including IP cores
and software libraries) provided by EDA tools and
open source community not only helps system designers
save time but also improves the stability and reliability
of targeted systems. At a higher level, we present an
experiment to verify hardware/software models and their
corporations in the platform by developing a remote
camera application. In this context, we implement the
entire CoMoSy platform on Spartan-3E Starter Kit [15].
This board is based on Spartan-3E FPGA devices with
all necessary peripherals for the application such as
512Mbits SDRAM, 128Mbits PROM, Ethernet PHY
controller, LCD, LEDs, buttons, etc. PS/2 port and VGA
port are also connected to a PS/2 keyboard and monitor
as standard input/output devices.

A desktop PC running Linux operating system is
used to establish communication with the FPGA board.
A camera is connected to this PC via USB interfaces.
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Transferring data between PC and the testing board is
done on a LAN network thanks to the integrated Ethernet
MAC controller as mentionned above. Figure 6 presents
the sequence diagram for the remote camera application.

Figure 6. Sequence diagram for the remote camera application.

The scenario is that the users first make a capturing
request on the testing board, and then the testing board
sends this request to the remote PC through LAN
network. Whenever PC receives a proper request, it
captures an image from camera, encodes the image and
then sends it back to the testing board. After completely
receiving the image, the testing board will decode and
display the decoded image on the screen. The system
provides several ways for the users to invoke the captur-
ing request, either typing a console command or pressing
a key binding or hitting a button on the board. So that,
it makes the system more flexible in interacting with the
users.

Such system requires two application softwares to
handle all actions on PC and on the testing board. The
embedded application running on the testing board is
built with the APIs provided by the software system. The
PC application software is written in C++ language using
the built-in classes of Qt Designer [16] and Video2Linux

library [17]. Inter-process communication between two
applications is based on socket mechanism. Figure 7
presents the results of our experiment, the captured
image is shown on both PC application and the testing
board (in 24-bit color mode) with Xilinx Virtex-4 FPGA
development kit.

On the same testing model, we also make other
experiments to validate the operation of analog-to-digital
converter (ADC), digital-to-analog converter (DAC) via
a shared SPI interface. One of these applications is the
temperature monitoring application. In this application, a
temperature sensor is connected to an ADC. This ADC
is interfaced with the system by using SPI unit. The
temperature variation is displayed on the testing board
as presented in Figure 8.

Figure 8. Temperature monitoring application.

Due to the logical resources of Spartan-3E device,
the performance of CoMoSy achieved on this board is
limited, it may take a few seconds to completely decode
a JPEG image with the frame size of 320× 240 pixels.
By implementing on high-performance devices or higher
integration density devices (Virtex-II or Virtex-4 for
example), the system performance can be significantly
improved through optimization processes and the recon-
figurability of MicroBlaze processor. Nevertheless, these
experiments have approved the functionalities as well as
the applicability of CoMoSy platform for controlling and
monitoring applications.
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(a) (b)

Figure 7. Validation results: (a) Client application view on PC side with captured image and other parameters; (b) Embedded application
view on CoMoSy side with decoded image.

V. CONCLUSION

In this paper, we presented the design and imple-
mentation of a flexible System-on-Chip platform for
controlling and monitoring applications using Xilinx
FPGA technology, both software and hardware issues.
The proposed platform uses a 32-bit MicroBlaze soft-
core processor and PLB bus as the base system. We have
integrated several hardware uinits/interfaces to provide
functional capabilities for a wide range of embedded
applications, including GPIOs, SPIs, UART, PS/2, DDR
SDRAM, Ethernet MAC, and VGA unit. In particular,
the VGA unit is an in-house design but it is compatible
with Xilinx design flow and therefore can be used for
other designs. This VGA unit supports multi-resolution
displays. The software system is intently developed from
existing resources, including a lightweight kernel, IP
core drivers, TCP/IP protocol stack library, JPEG de-
coder library to let users build their software applications
quickly at high abstraction level.
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