#### **RAPID COMMUNICATIONS**



# Magnetic and electrical properties of Ni-doped Ba(Ti<sub>0.8</sub>Zr<sub>0.2</sub>)O<sub>3</sub> materials

N. H. Thoan<sup>1</sup> · C. T. T. Trang<sup>1</sup> · N. D. Co<sup>2</sup> · P. V. Vinh<sup>3</sup> · N. N. Trung<sup>1</sup> · L. H. Bac<sup>1</sup> · H. M. Tuan<sup>1</sup> · N. Q. Huy<sup>1</sup> · D. D. Dung<sup>1</sup>

Received: 26 April 2021 / Accepted: 18 June 2021 / Published online: 28 June 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

#### Abstract

In this work, Ni-doped lead-free ferroelectric  $Ba(Ti_{0.8}Zr_{0.2})O_3$  materials were well synthesized by a simple chemical route. The complex magnetic behavior of the materials was explained by the random distribution of Ni cations into the  $Ba(Ti_{0.8}Zr_{0.2})O_3$  host lattice. As increasing the Ni concentration to 9 mol%, nonlinear electric polarization behavior remained unchanged in the  $Ba(Ti_{0.8}Zr_{0.2})O_3$  materials. The observations in nonlinear magnetization and electric polarization in Ni-doped  $Ba(Ti_{0.8}Zr_{0.2})O_3$  materials suggested an extension of new material functions to the development of advanced materials for electronic devices.

Keywords  $BaZrO_3 \cdot BaTiO_3 \cdot Lead$ -free ferroelectric  $\cdot$  Ferromagnetic  $\cdot$  Ni dopants

# 1 Introduction

Common ferroelectric Pb(Zr,Ti)O<sub>3</sub>-based (PZT) ceramic materials have been widely applied in electronic devices [1]. However, the current environment and human health are affected because these materials contained a considerable amount of Pb (~ 60 wt.%) [1]. Lead-based ferroelectric materials are toxic to the human body and damage the environment [1, 2]. It is thus necessary to develop a new type of lead-free ferroelectric materials to replace the PZT in current electronic devices. Among the lead-free ferroelectric materials, BaTiO<sub>3</sub>-based materials such as (Sr,Ba)TiO<sub>3</sub> are developed, which could replace PZT-based materials in electronic devices, such as dynamic random access memories, ferroelectric random access memory, capacitors, or microwave components [3–7]. However, the unstable phase of Sr modified at the Ba site in BaTiO<sub>3</sub> materials is a challenge in

D. D. Dung dung.dangduc@hust.edu.vn

<sup>1</sup> Multifunctional Ferroics Materials Lab., School of Engineering Physics, Ha Noi University of Science and Technology, 1 Dai Co Viet road, Hanoi, Vietnam

- <sup>2</sup> Faculty of Engineering Physics and Nanotechnology, VNU University of Engineering and Technology, Vietnam National University, 144 Xuan Thuy road, Hanoi, Vietnam
- <sup>3</sup> Faculity of Physics, Hanoi National University of Education, 136 Xuan Thuy road, Hanoi, Vietnam

research because the radius of Sr cations is smaller than that of Ba cations, resulting in local chemical compression. The hopping of electrons between Ti<sup>3+</sup> and Ti<sup>4+</sup> cations became easier when the distance between Ti<sup>3+</sup> and Ti<sup>4+</sup> cations was closer via chemical strain. As a result, the leakage current of Sr-modified BaTiO<sub>3</sub> materials increased, larger than that of BaTiO<sub>3</sub> materials [3]. Note that the  $Ti^{3+}$  defects existed in BaTiO<sub>3</sub>-based materials because oxygen vacancies promoted the reduction in the valence state of Ti<sup>4+</sup>. Recently, the leakage current issue in (Ba,Sr)TiO<sub>3</sub> materials is addressed by Zr impurities as a substitute for Ti sites [3, 8–11]. Badapanda et al. reported that Zr-modified BaTiO<sub>3</sub> compounds existed in more stable phases than Sr-modified BaTiO<sub>3</sub> compounds [3]. In addition, Bootchanont et al. reported that the Ti off-center displacements were dependent on the Zr concentration-doped BaTiO<sub>3</sub> materials [8]. The Ba(Ti<sub>1-x</sub>Zr<sub>x</sub>) O<sub>3</sub> compounds exhibited traditional ferroelectric behaviors for x smaller than 10 mol%, whereas a typical relaxor ferroelectric behavior for x exhibited in the range of 0.26-0.4[9, 10]. Yu et al. reported that the large unipolar strain levels of 0.18–0.25% and the remanent polarization of 13–18  $\mu$ C/cm<sup>2</sup> were obtained for BaZrO<sub>3</sub>-modified BaTiO<sub>3</sub> with BaZrO<sub>3</sub> dopants ranging from 3 to 8 mol% [11]. Mahajan et al. reported that the BaZrO<sub>3</sub> solid solution into the host BaTiO<sub>3</sub> with 15 mol% increased the dielectric constant from 1675 to 10,580 at room temperature (RT), whereas the maxima dielectric constant value increased from ~ 13,626 to 21,023 with diffuse phase transition compared with pure BaTiO<sub>3</sub> [12]. Huang et al. reported an improvement in charge trapping in nonvolatile memory based on Zr-doped BaTiO<sub>3</sub> materials [13]. Therefore, the Ba(Ti,Zr)O<sub>3</sub> system can be used to replace PZT-based materials in currently used electronic devices. According to Bera et al. and Yu et al.,  $(1-x)BaTiO_3 + xBaZrO_3$  compounds with x < 0.1 showed traditional ferroelectric behavior, while the similar systems with x the range 0.26 - 0.4 showed a typical relaxor ferroelectric behavior [9, 10]. Yu et al. also reported that a large unipolar strain level of 0.18-0.25% was obtained in that BaZrO<sub>3</sub>-modified BaTiO<sub>3</sub> materials with 0.03 - 0.08 mol% of BaZrO<sub>3</sub>, while the remnant polarization was estimated at 13–18  $\mu$ C/cm<sup>2</sup> [11]. Liu et al. reported that the normal ferroelectric properties of BaTiO<sub>3</sub> could change to relaxors by adding BaZrO<sub>3</sub> with high concentration levels up to 40 mol% [14]. The main problem was that the solid-state reaction method to synthesize the BaTiO<sub>3</sub>-BaZrO<sub>3</sub> system required too high sintering temperatures up to 1300 °C onwards [9]. The reduction in sintering temperatures for synthesizing BaTiO<sub>3</sub>-BaZrO<sub>3</sub> systems was archived by using a sol-gel method where the phase forming could start from 400 °C [15]. Among a wide range of Ba(Ti,Zr)O<sub>3</sub> systems, Ba(Ti<sub>0.8</sub>Zr<sub>0.2</sub>)O<sub>3</sub> materials show continuous conductance change for both increasing and decreasing and good potential for resistive switching memory devices (memristors or ReRAM), indicating that the synaptic weight change is responsible for the biological learning process as artificial synapses in the neuromorphic systems [16]. Therefore, injecting ferromagnetism in current lead-free ferroelectric Ba(Ti<sub>0.8</sub>Zr<sub>0.2</sub>)O<sub>3</sub> compounds is interesting for the extension of function materials for smart electronic applications.

Recently, doping transition metals into host lead-free ferroelectric materials is a potential method for creating a new material type that exhibited ferroelectric and ferromagnetism for smart electronic devices [17–19]. Therefore, novel functions of lead-free ferroelectric materials are studied by combining them with ferromagnetism at room temperature. Room temperature ferromagnetism (RTF) in leadfree ferroelectric materials has been reported for Fe-, Co-, Ni-, Mn-, and Cr-doped Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub> materials [20–24]. RTF in  $Bi_{0.5}K_{0.5}TiO_3$  materials is also achieved via doping transition metals, such as Fe, Co, Mn, Ni, and Cr [25-29]. RTF is reported for Co-, Fe-, and Mn-doped KNbO<sub>3</sub> samples [30–33]. Tiwari et al. reported that diamagnetic properties were exhibited in Ba- and Sc-co-doped KNbO3 materials [34]. In addition, ferromagnetic ordering at RT is reported for various BaTiO<sub>3</sub> materials doped with transition metals, including Fe, Co, Ni, Mn, and Cr [35-39]. The observation in the ferromagnetic state of transition metal-doped lead-free ferroelectric materials is important in creating a new type of electronic devices, such as a four-state multiferroic memory [40]. The Ba(Ti<sub>0.8</sub>Zr<sub>0.2</sub>)TiO<sub>3</sub> composition shows good elec-</sub>trical properties among a wide range of Ba(Ti,Zr)O<sub>3</sub>-based compositions [14, 41, 42]. Recently, there is the observation in complex ferromagnetism at room temperature in Fe-, Mn-, and Co-doped Ba(Ti<sub>0.8</sub>Zr<sub>0.2</sub>)O<sub>3</sub> materials [43–45]. In addition, the room temperature ferromagnetism was obtained in various Ni-doped lead-free ferroelectric materials such as Bi<sub>1/2</sub>Na<sub>1/2</sub>TiO<sub>3</sub>, Bi<sub>1/2</sub>K<sub>1/2</sub>TiO<sub>3</sub>, BaTiO<sub>3</sub> materials [22, 28, 37]. However, so far, there was no report on the influence of Ni impurity-doped Ba(Ti<sub>0.8</sub>Zr<sub>0.2</sub>)O<sub>3</sub> materials on the optical, magnetic, and electrical properties.

In this work, the Ni-doped Ba( $Ti_{0.8}Zr_{0.2}$ )TiO<sub>3</sub> compounds are fabricated by a simple chemical route method. The complex random incorporation of Ni into the Ba( $Ti_{0.8}Zr_{0.2}$ )TiO<sub>3</sub> host lattice enhances the magnetic properties of host materials. We obtained the nonlinear electric polarization of Ba( $Ti_{0.8}Zr_{0.2}$ )TiO<sub>3</sub> materials by incorporating Ni impurities into the host lattice.

#### 2 Experimental

Ba(Ti<sub>0.8</sub>Zr<sub>0.2</sub>)O<sub>3</sub> and Ni-doped Ba(Ti<sub>0.8</sub>Zr<sub>0.2</sub>)O<sub>3</sub> materials with 0.5, 1, 3, 5, 7, and 9 mol% Ni (namely BZT and BZT-xNi with x = 0.5 - 9, respectively) were synthesized by a chemical route method. Precursors included barium carbonate BaCO<sub>3</sub>, tetraisopropoxytitanium IV C<sub>12</sub>H<sub>28</sub>O<sub>4</sub>Ti,  $ZrO(NO_3)_2 \cdot xH_2O$ , and  $Ni(NO_3)_2 \cdot 6H_2O$ . The solvents used in this study included acetic acid, acetylacetone, and de-ionized water. Firstly, raw BaCO<sub>3</sub> was weighed and dissolved in a mixed solution of acetic acid and de-ionized water at the volume ratio of 1:5. Secondly,  $ZrO(NO_3)_2 \cdot xH_2O$  and  $Ni(NO_3)_2 \cdot 6H_2O$  were weighed as an estimation of doping levels and then added to the solutions. After 2-3 h of magnetic stirring, homogeneous transparent solutions were obtained. Subsequently, consistent amounts of the  $C_{12}H_{28}O_4$ Ti solution were reduced in the later solutions. After 5 h of magnetic stirring, homogeneous sols were formed from the final solutions. The sols were then left in an oval at 100 °C to obtain dry gels. The dry gels were annealed at 900 °C in the air for 3 h, then naturally cooled to room temperature, and ground to form powder samples. The chemical composition of the samples was measured by energydispersive X-ray spectroscopy (EDX, S-4800 Hitachi) and further confirmed by using an electron probe microanalyzer (EPMA, Shimadzu EPMA 1600). The surface morphologies of pure BZT and Ni-doped BZT compounds were achieved by field-emission scanning electron microscopy (FE-SEM, S-4800 Hitachi). The crystal structures of the samples were detected by X-ray diffraction (XRD, Brucker D8 Advance) spectroscopy. Raman measurements were carried out at room temperature using a Renishaw in Via Micro Raman Microscope system (Renishaw plc.) equipped with a 633-nm laser. Ultraviolet-visible (UV-Vis, Jasco V-670) absorption spectroscopy measurements were carried out to characterize

the optical properties of the samples. The magnetic properties of pure BZT and Ni-doped BZT compounds at RT were obtained by using a vibrating sample magnetometer (VSM, Lakeshore 7404). Each powder sample was mixed with 5 wt.% polyvinyl alcohol as a binder and pressed into a disk pellet at 98 MPa by using a 24-Ton pellet presser (MP24A, Across International) with cylindrical dies  $\phi = 6$  mm. The pellets were sintered at 1100 °C for 3 h in the air and then naturally cooled to RT. The pellet's surface was polished and covered by silver paste, and then thermally treated at 700 °C for 30 min in the air. Electrical measurements were conducted by a Precision LC II ferroelectric test system (Radiant Technologies Inc.) and an HP 4192A LF impedance analyzer.

### **3** Results and discussions

The appearance of expected chemical compositions in the pure BZT compound was qualified by using EDX spectrum, as shown in Fig. 1a. All expectation chemical elements, including Ba, Ti, and O, appeared in the EDX spectrum by indexing the typical emission energy. As shown in Fig. 1b, the impurity Ni elements were clearly observed in the EDX spectrum of 9 mol% Ni-doped BZT materials. The result confirmed the presence of Ni cations in the as-prepared samples. The quality EDX results showed direct evidence for the presence of all expected chemical elements in both pure BZT and Ni-doped BZT samples.

The FE-SEM images in Fig. 2 showed the influence of Ni concentration on the surface morphology of BZT samples. The inset of each figure showed the size distribution of frequent particles. The distribution of pure BZT material exhibited homogeneous surface morphologies in Fig. 2a. The grain size of pure BZT material was estimated at approximately 50–80 nm. Figure 2b–g shows the surface morphologies of the Ni-doped BZT samples with various Ni concentrations in the range of 0.5–9 mol%, exhibiting an inhomogeneous grain size distribution. As shown in Fig. 2g, the grain size of the 9 mol% Ni-doped BZT sample decreased to approximately 10-30 nm. The complex grain growth of BZT materials concerning Ni concentrations could be explained by two main mechanisms associated with oxygen vacancies and impurities. In general, oxygen vacancies promoted grain growth, whereas impurities hindered grain growth [46–49]. Oxygen vacancies were natural defects and possibly enhanced by substituting  $Ni^{2+/3+}$  for Ti<sup>4+</sup> to balance valence states in oxide materials. By contrast, increased levels of Ni impurity hindered grain growth, thereby leading to an inhomogeneous distribution of grain size. As a result, the compensative interaction of oxygen vacancies and impurities during phase formation resulted in the inhomogeneous distribution of grain size.



**Fig. 1** Energy-dispersive X-ray, EDX, spectra of **a** pure BZT and **b** 9 mol% Ni-doped BZT samples. The inset of each figure shows a selected area for chemical composition measurements, respectively

To better understand the role of Ni doping on the structure of the studied samples, XRD measurements were performed. XRD patterns of pure BZT and BZT-xNi samples in Fig. 3a revealed the influence of Ni doping on the host BZT lattice. Based on the XRD peak positions and their relative intensity, all studied samples were assigned to a tetragonal crystal structure (P4mm symmetry). No additional peak related to either Ni impurity or phase separation was observed in the XRD patterns of Ni-doped BZT samples, indicating that the structure of Ni-doped BZT remains unchanged after Ni doping. This observation confirmed the random incorporation of Ni impurities into the host BZT lattice. The incorporation of Ni into the BZT lattice via Ni cation substitution is illustrated in Fig. 3b, where the XRD patterns of pure BZT and Ni-doped BZT samples were enlarged from 30.0° to 32.5° for satellite peaks (101)/(110). As shown in Fig. 3b, the peak around 31.2° shifted to higher angles as increasing Ni



**Fig.2** Field-emission scanning electron microscopy (FE-SEM) images **a** pure BZT and Ni-doped BZT samples with **b** 0.5, **c** 1, **d** 3, **e** 5, **f** 7, and **g** 9 mol%. The inset of each figure shows the size distribution of frequent particles

**Fig. 3 a** X-ray diffraction patterns, **b** magnification of X-ray patterns in the  $2\theta$  range of  $30.0-32.5^\circ$ , and **c** lattice constants (*a*, *c*) of pure BZT and Ni-doped BZT with 0.5, 1, 3, 5, 7, and 9 mol%



concentrations, indicating compression of lattice parameters in our studied samples. Furthermore, the lattice parameters a and c of the pure BZT and the Ni-doped BZT according to Ni doping level are shown in Fig. 3c. The results show that distorted lattice parameters of BZT compound are not linear as a function of Ni doping amounts, which has complexed distortion in lattice parameters. The lattice distortion of the Ni-modified BZT compounds could be understood by considering the radii of the impurity cations and the

host cations. Shannon reported that the sizes of  $Ti^{4+}$  and  $Zr^{4+}$  cations in the coordination number (CN) of VI were 0.605 and 0.72 Å, respectively [50]. However, the size of Ni cations was complex, depending on theirs valence and spin states [50]. At the CN of VI, the radius of Ni<sup>2+</sup> cations was 0.690 Å [50]. Having the same CN of VI, Ni<sup>3+</sup> cations had a radius of 0.56 and 0.60 Å for the lower spin and high spin states, respectively, whereas Ni<sup>4+</sup> cations had a radius of 0.48 Å at the low spin state [50]. Consequently, the complex

local lattice distortion can be obtained by randomly incorporating Ni cations into Ti or Zr sites in BZT compounds. The same trend of lattice compression was expected when the Ni<sup>3+</sup> cations with either low spin or high spin states and the Ni<sup>4+</sup> cations incorporated into the Ti sites because the radius of the  $Ni^{3+/4+}$  cations was smaller than that of the  $Ti^{4+}$ cations. However, the lattice parameters of BZT compounds might be expanded when Ni<sup>2+</sup> was incorporated on the Ti sites. In addition, the oxygen vacancies were created by random incorporation of Ni<sup>2+</sup> and Ni<sup>3+</sup> cations for the Ti<sup>4+</sup> or  $Zr^{4+}$  site to maintain charge neutrality. Notably, the size of oxide vacancies in perovskite-structured oxides was 1.31 Å, which was lower than that of oxygen anion  $(1.4 \text{ \AA})$  [51]. So, the random presence of oxygen vacancies in the host lattice caused the lattice parameter to shrink. The relationship of lattice parameter compressing via oxygen vacancies and transition metal dopants was reported in Refs. [22, 24, 28, 29]. Recently, Chen et al. reported that the Ni cations possibly filled at the A sites in perovskite lead-free ferroelectric  $Bi_{0.5}Na_{0.5}TiO_3$  materials [52]. Shannon reported that the radius of the Ba<sup>2+</sup> cations was 1.60 Å, which was larger than that of  $Ni^{2+}$  cations [50]. Consequently, the substitution of  $Ni^{2+}$  at the A site of the BZT compounds resulted in the compression of lattice parameters. So far, the origin of lattice distortion in the host BZT materials via Ni dopants was not clear, needing further investigation to stop the incorporation of the Ni valence and spin states with host BZT compounds. Moreover, the compensation of the preferred site for the substitution of Ni cations in the host BZT lattices should be confirmed. However, Ni-induced lattice distortion was important for the random incorporation of Ni cations into the host BZT materials. Furthermore, the average crystalline size of pure BZT and Ni-doped BZT samples was estimated using the Scherrer equation  $D_{hkl} = k\lambda/\beta_{hlk}cos\theta$ , where  $D_{hkl}$ is the crystallite size in the direction perpendicular to the lattice planes, (hkl) are the Miller indices of the planes being analyzed, k is a numerical factor frequently referred to as the crystallite-shape factor,  $\lambda$  is the X-ray wavelength,  $\beta_{hlk}$  is the width (full-width at half-maximum) of the X-ray diffraction peak in radians, and  $\theta$  is the Bragg angle [53, 54]. In our calculation method, we used k factor of approximately 0.9 [54, 55]. In our experimental, the Cu  $K_{\alpha}$  with a radiation wavelength of 1.5406 Å was used as X-ray sources for characterization of crystal Ni-doped BZT phase. The pure BZT materials exhibited an average crystalline size of around 16 nm. The addition of Ni impurities into host BZT materials resulted in a slight increase in the average crystalline size in the range from 18 to 20 nm. Our observation of average crystalline sizes from XRD spectra was well consistent with obtained results from surface morphology FE-SEM.

The role of random incorporation of Ni impurity cations into host BZT materials would be further confirmed by using Raman scattering studies. Figure 4a shows the Raman spectra of the pure BZT and Ni-doped BZT samples measured at room temperature. For the pure BZT sample, the Raman spectrum could be divided into three main regions within the wavenumber range of 150 - 900 cm<sup>-1</sup>. That shape of Raman spectra remained unchanged after Ni doping with

Fig. 4 a Raman spectra at room temperature of the pure BZT and Ni-doped BZT as a function of Ni amounts, and the magnified Raman spectra in the wavenumber range of b  $480-550 \text{ cm}^{-1}$  and c 670 to  $850 \text{ cm}^{-1}$ 



up to 9 mol%, which further confirmed that no impurityrelated phase was appeared, with well consistent with the XRD results. The observation of the main peaks around 302 cm<sup>-1</sup> and broad peaks at around 715 cm<sup>-1</sup> along with other peaks also further confirmed the characteristic of tetragonal structural of studied samples with XRD results [56, 57]. It was suggested that Raman active modes of the tetragonal structure BZT compounds followed the tetragonal BaTiO<sub>3</sub> structure, consisting of  $4E(TO + LO) + 3A_1(TO + L)$ O) + B<sub>1</sub>(TO + LO) modes [56]. The observed anti-resonance effect at 175 cm<sup>-1</sup> was assigned to a coupling between the sharp A1(TO1) and broad A1(TO2) modes [56, 58]. Singh et al. reported that the vibration Raman peaks around 270 and 304 cm<sup>-1</sup> were caused by the vibration of TiO6 group, while the peaks at approximately  $514 \text{ cm}^{-1}$  were related to the vibration displacement of oxygen atoms [59]. The influence of oxygen vacancies on the active vibration modes in BZT materials via Ni doping is shown in Fig. 4b. The center broad peaks around 523 cm<sup>-1</sup> of pure BZT materials tended to shift to a lower wavenumber, about 517 cm<sup>-1</sup>, as increasing the Ni impurity amount up to 9 mol%, which were suggested to be related to the oxygen vacancies [60]. Note that the oxygen vacancies were created due to the difference in valence states of Ni<sup>2+/3+</sup> cations that were randomly incorporated at the Ti sites in the host BZT materials. The evidence of vacancy defects in the BZT lattices via Ni doping was well consistent with the XRD results where BZT lattice parameters were compressed after incorporating Ni cations into the BZT host lattices. Vinothini et al. reported that the mode at around 715 cm<sup>-1</sup> is a mixed A1 and E modes associated with the breathing of BO6 octahedra in the ferroelectric phase, whereas the mode at around 780  $\text{cm}^{-1}$  is a stretching mode of BO6 octahedral related to A- or B-site substitutions in the perovskite structure [61]. The E1(TO1) and E1(TO2) modes associated with the tetragonal-cubic phase transition were observed at 116 and 301 cm<sup>-1</sup>, respectively, whereas the A1(LO3) mode was found at 720  $\text{cm}^{-1}$ , with zirconium (Zr) substituted at the titanium (Ti) sites. However, the coupling between the sharp A1(TO1) and broad A1(TO2) modes decreases as the intensity of the A1(TO2) mode decreases [62, 63]. In addition, the peaks at 720  $\text{cm}^{-1}$  could be labeled as mixed A1 and E mode associated with the breathing mode of BO6 octahedra in the ferroelectric phase, whereas the peaks at 789 cm<sup>-1</sup> can be labeled as stretching modes (A1g asymmetric breathing) mode of BO6 octahedra related to Zr substitution at Ti lattice sites [64, 65]. Figure 4c shows the magnified Raman spectra of the pure BZT and Ni-doped BZT materials in the wavenumber range from 670 to 850 cm<sup>-1</sup>. Two Raman peaks were observed at around 717 cm<sup>-1</sup> and 787 cm<sup>-1</sup> which were well consistent with the recent observation in BZT materials [61, 62, 64, 66]. Our results showed that the intensity of the Raman peak at around 787 cm<sup>-1</sup> decreased after randomly incorporating Ni cations into the host BZT lattices, that being suggested to relate to Ni substitution at Ti lattice sites.

The Ni doping into host BZT materials results in a complex reduction in the optical bandgap. Figure 5a presents UV-Vis absorption spectra of pure BZT and BZT-xNi samples, indicating the modification of the absorption spectra of BZT compounds via random incorporation of Ni into the host lattice. The absorption spectra of pure BZT showed a single absorption edge with a shoulder, which was related to the surface defects and/or self-defects when samples were nanosized [3, 67–69]. Furthermore, as incorporating of Zr cations into BaTiO<sub>3</sub> to form BaTiO<sub>3</sub>-BaZrO<sub>3</sub>, one observed a shoulder in UV-Vis spectrum that presented a new local defect of Zr cations in the electronic structure of BaTiO<sub>2</sub> because of the zirconium 4d and titanium 3d states located below the conduction band [3, 68]. The bandgap decrease in BaTiO<sub>3</sub> via Zr incorporation was due to a structure symmetry break because of the presence of [ZrO6] cluster [70, 71]. Xin et al. reported that the optical band gap energy of BaTiO<sub>3</sub> compounds was dependent on Zr dopant concentration, where the large crystal splitting of the Zr 4d states was due to the deformation of the BZT crystal structure with increasing Zr amounts [72]. For Ni-doping BZT samples,

**Fig. 5 a** UV–Vis spectra and **b** plots of  $(\alpha h \gamma)^2$  values versus photon energy  $(h \gamma)$  for the pure BZT and Ni-doped BZT compounds with various Ni concentrations. The inset of Fig. 5**b** shows the  $E_g$  values of the BZT compounds as a function of Ni impurity concentrations



the absorption spectroscopy of samples was modified, where the absorption edges of BZT compounds were distorted. Moreover, the double hump in the absorption spectroscopy was obtained in the absorption range of 600 - 900 nm with increasing intensity as the Ni concentration increased. This observation was well consistent with recent reports on the double humps in absorption spectra of Ni-doped lead-free ferroelectric materials, such as Ni-doped Bi<sub>0.5</sub>K<sub>0.5</sub>TiO<sub>3</sub> or Ni-doped Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub> materials [22, 28, 52, 73, 74]. The double hump was related to a 3d-3d interband transition of Ni cation's electron because of 3d energy in octahedral under crystal field [20-22, 25-27, 29]. However, unlike the absorption spectra of Ni-doped Bi0.5Na0.5TiO3 materials or Ni-doped Bi<sub>0.5</sub>K<sub>0.5</sub>TiO<sub>3</sub> materials, the absorption spectra of Ni-doped BZT materials indicated the presence of a shoulder in the range of 400-500 nm, as the Ni concentrations increased. The appearance of a shoulder and a hump in the absorption spectra of Ni-doped BZT materials was related to the presence of a multivalence state of Ni cations randomly incorporated at the A and B sites. By using Wood-Tauc relation between phonon energy  $h\nu$  and bandgap  $E_{g}$ :  $(\alpha h\nu) = A(h\nu - E_{g})^{n}$ , the optical bandgap  $E_{g}$  of studied samples was deduced, where n is a constant associated with different types of electronic transitions (n=2, 1/2, 3, or 3/2)or 3 for indirect allowed, direct allowed, indirect forbidden and direct forbidden transitions, respectively, and  $\alpha$  is the absorption coefficient; A is a constant [75]. Thus, the  $E_{\alpha}$ values of pure BZT compounds and Ni-doped BZT compounds were evaluated by extrapolating the linear portion of the curve or tail. Recently, Ba(Zr<sub>0.2</sub>Ti<sub>0.8</sub>)O<sub>3</sub> compounds were reported to be direct allowed transition materials in Ref. [76]. As a result, in this study, the value n = 1/2 was used in the Wood–Tauc equation to obtain relation  $(\alpha h\nu)^2$ proportional to photon energy  $(h\nu)$ , as shown in Fig. 5b. The  $E_{\alpha}$  values were then estimated by extrapolating the linear portion of the plot  $(\alpha h\nu)^2$  versus  $(h\nu)$  to  $(\alpha h\nu)^2 = 0$ . The estimation of  $E_{g}$  values for pure BZT compounds with the direct transition had values of 3.16 eV, which consisted of the recent observation from the first principle theoretical calculation for  $E_{g}$  values from 2.60 eV to 3.45 eV or was estimated from the experiment for  $E_{g}$  ranging from 2.92 eV to 3.84 eV, based on the amount of Zr dopants and method of fabrication [3, 68, 70-72, 76-78]. The addition of Ni impurities incorporated with the host BZT lattices resulted in the complex distortion of the  $E_{\rm g}$  values, where the  $E_{\rm g}$ value and Ni concentration changed from 3.23 to 3.14 eV and from 0.5 to 9 mol%, respectively, in BZT compounds. The inset in Fig. 5b shows in more detail the dependence of BZT's  $E_g$  values as a function of Ni doping concentration. The figure indicated that  $E_{g}$  values did not follow the trend recently reported in transition metal-doped lead-free ferroelectric materials [20-30]. In recent studies [20-29], we have suggested three main factors that affect the distortion of the BZT's  $E_{g}$  values via incorporation of impurities: (i) appearance of a new local state in the middle of the bandgap of BZT compounds, (ii) creation of oxygen vacancies state locating below the conduction band, and (iii) lattice distortion caused by defects. By using theoretical DFT calculation, Ref. [49] predicted that, depending on density states, transition metal impurity atoms will incorporate with A sites or B sites of the lead-free ferroelectric perovskite structure. In Ref. [28], Thiet et al. reported the relation of the concentration of Ni cation incorporated into the host lattice and the decrease in  $E_{\alpha}$  values in Ni-doped lead-free ferroelectric materials, whereas the phase segregated increased the  $E_{g}$ values. In this study, we observed a single perovskite phase of Ni-doped BZT compounds by XRD analysis. However, the possible phase segregation and Ni cations located at the interstitial site could not be detected by the XRD method. As a result, the complex variation in  $E_{g}$  values of BZT materials as a function of Ni concentrations needed further research. At least at present, the distortion of  $E_{g}$  values as a function of Ni impurity concentrations was confirmed by complex random incorporation of Ni with the host BZT lattices.

The observation in complex magnetic properties at room temperature of Ni-doped BZT materials was shown as a level of Ni doping concentrations. Figure 6 shows M-H loop curves of the pure BZT and BZT-xNi samples. The anti-Sshape of the pure BZT's M-H loop in Fig. 6a may be derived from the compensative interaction of diamagnetism with weak ferromagnetism as low saturation magnetization. The diamagnetic signal of the pure BZT material originated from empty states of 3d orbital of Ti<sup>4+</sup> cations [24, 29, 39, 79]. A typical M-H curve of pure BZT was obtained and is shown in the inset of Fig. 6a after subtracting the diamagnetic parts, which revealed the weak ferromagnetism property of pure BZT compounds. Figure 6a also exhibits a saturation magnetization  $M_s$  of 3.1 memu/g with nonzero remanent magnetization  $M_r$  of 0.4 memu/g and nonzero magnetic coercive field  $H_{\rm C}$  of 0.98 Oe, confirming ferromagnetic ordering of the materials at RT. As mentioned in our previous studies [43–45], the weak ferromagnetism of pure BZT material at RT was related to surface effects and/or self-defects (e.g., Ti<sup>3+</sup> defects and Ti<sup>4+</sup> vacancies). The incorporation of Ni into the host BZT lattices enhanced the magnetic behavior. The diamagnetic signal of the BZT compounds was suppressed and the ferromagnetic signal was enhanced after doping Ni impurities (Fig. 6b-e). The opposite side observation for low Ni concentrations from 0.5 to 5 mol% is shown in Fig. 6b-e, which enhanced the ferromagnetic signal after introducing the Ni cation impurities. Positive and negative magnetization with the direction of the applied external magnetic field was obtained for 7 and 9 mol% Ni dopants, respectively (Fig. 6f, g). However, anti-S-shapes remained in the M-H curves as increasing Ni concentration up to 9 mol%. The results indicated that the ferromagnetic



**Fig. 6** Magnetic hysteresis loops at room temperature of **a** pure BZT and Ni-doped BZT compounds with various Ni concentrations: **b** 0.5, **c** 1, **d** 3, **e** 5, **f** 7, and **g** 9 mol%. The inset of Fig. 6 **a** shows the *M*-*H* curve of pure BZT compounds after extracting the diamagnetic part

properties of BZT materials were enhanced via the incorporation of Ni impurities compared with self-defect and/or surface effect induced (ferromagnetism in BZT). However, the Ni cations randomly incorporated with the host lattice BZT compound induced weak ferromagnetism, where the diamagnetic properties of samples were still affected by Ni-doped BZT samples. The weak ferromagnetic ordering at RT in Ni-doped lead-free ferroelectric materials in various families (Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>, Bi<sub>0.5</sub>K<sub>0.5</sub>TiO<sub>3</sub>, BaTiO<sub>3</sub>, or KNbO<sub>3</sub>) was recently reported [22, 28, 37, 80].

To further understand the weak ferromagnetism in Nidoped BZT materials, we introduced the possible spin configurations in Fig. 7. Notably, Ni cations possibly exist in multivalence states, such as Ni<sup>2+</sup>, Ni<sup>3+</sup>, and Ni<sup>4+</sup> states, where Ni<sup>2+</sup> and Ni<sup>4+</sup> cations could only be stable in a low spin state, whereas Ni<sup>3+</sup> cations could be stable in both low and high spin states [50], as illustrated in Fig. 7a–c, respectively. Consequently, if the magnetic moment was contributed only from the spin magnetic moment, then the spin moment of Ni<sup>2+</sup> ( $3d^84s^\circ$ ) cations in the spin configuration of  $t_{2g}[\uparrow\downarrow\uparrow\downarrow\downarrow]e_g[\uparrow\uparrow]$  was 1  $\mu_B$ /Ni, and the spin moment of Ni<sup>4+</sup> ( $3d^64s^\circ$ ) cations in the spin configuration of  $t_{2g}[\uparrow\downarrow\uparrow\downarrow\downarrow]e_g[\uparrow]$ was 0  $\mu_B$ /Ni. In addition, the spin moments of Ni<sup>3+</sup> ( $3d^74s^\circ$ ) cations in the low spin configuration of  $t_{2g}[\uparrow\downarrow\uparrow\downarrow\downarrow]e_g[\uparrow]$  and in the high spin configuration of  $t_{2g}[\uparrow\downarrow\uparrow\downarrow\uparrow]e_g[\uparrow\uparrow]$  were 0.5 and 1.5  $\mu_B$ /Ni, respectively. In Refs. [81–83], the authors



Fig. 7 Spin configuration of Ni cations located at the octahedral site because of the spin and valance states of a Ni<sup>2+</sup>, b Ni<sup>3+</sup>, and c Ni<sup>4+</sup> cations

reported that an additional orbital might contribute to the magnetic moment of an ion through relaxation of orbital angular momentum quenching. This assumption seemed to be convincing because the magnetic moment decreased as increasing Ni amount due to an enhancement of quenching through increasing antiferromagnetic super-exchange coupling strength between two neighboring magnetic impurity ions via adjacent  $O^{2-}$  ions [52, 55]. Recently, Dung et al. reported that the possible Ni cations were more stable at a low spin state, resulting in a low magnetic moment [22]. The results were also consistent with the recent observation of the divalent state of Ni ions in Ni-doped Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub> materials [84]. Consequently, based on the observation in the low magnetic moment of Ni-doped BZT compounds, we suggested that the original ferromagnetism ordering at RT in Ni-doped Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub> was majorly originated from a low spin state interaction of Ni ion in Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub> materials. However, the observation of nonzero  $H_{\rm C}$  and  $M_{\rm r}$  values in pure BZT and Ni-doped BZT compounds confirmed the presence of ferromagnetic states at RT. Consequently, the ferromagnetic properties are successfully combined in leadfree ferroelectric BZT materials.

To characterize the dielectric properties of studied samples, the dielectric constant was measured and is presented in Fig. 8a, b. As shown in Fig. 8a, the dielectric constant of each sample was almost a constant in the frequency range of 1 kHz-5 MHz, indicating a negligible effect of mobile charge carriers. In addition, the dielectric constant increased with frequency in the range of 5-13 MHz, which might relate to system resonance conditions [85]. We suggested that, at such high frequencies, the excess vibrations in the BZT materials promoted electronic polarization and resulted in the increase in the dielectric constant. The dielectric constant of pure BZT is about  $80 \pm 4$  in the frequency range of 1 kHz-5 MHz. With doping 0.5 mol% Ni amounts, the dielectric constant of the material was strongly increased up to  $1020 \pm 10$ , nearly 13 times higher than that of the pure BZT, as shown in Fig. 8b. However, the dielectric constant decreased monotonously with increasing Ni contents and reached a saturated value of about  $360 \pm 10$ . The dielectric constant of BZT-9Ni sample is still about four times higher than that of the pure PZT. The enhancement of dielectric constant possible resulted from electric heterogeneous nature and stronger polarization of perovskite structure by Ni doping. We suggested that the compression of BZT lattice parameters by Ni doping, as mentioned in the previous section, resulted in stronger polarization and subsequently caused the dielectric constant enhancement. According to Thakur et al. [85], the increase in dielectric constant with frequency at the high-frequency range for all studied samples might relate to system resonance conditions. Jie et al. reported that the dielectric properties of BZT materials were enhanced by Mn doping [86]. The enhanced dielectric behavior of BZT materials via Mn doping was suggested to cause by the compensation of the contribution of oxygen vacancy and the reorientation of defect complexes [86]. The dielectric properties of (Ba,Sr)TiO<sub>3</sub> materials were also reported to be enhanced via doping with Mn [87]. Li et al. reported that leakage current of (La,Fe)-co-doped Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>-based materials was reduced; the ferroelectric and dielectric properties were enhanced, resulting from decreasing the carrier concentration by suppressing the oxygen vacancies, forming defect complex, and turning electron hopping through Ti<sup>4+</sup> and Ti<sup>3+</sup> via lattice distortion [88]. The defect complexes of Fe cations  $Fe_{Ti}$  and oxygen vacancies  $V_{O}^{"}$ ,  $(Fe_{T_{i}}^{'}V_{O}^{"}Fe_{T_{i}}^{'})$  hindered the free movement of oxygen vacancies [89, 90]. Cai et al. reported that the dielectric constant of Ni-doped BZT ceramics was influenced by many factors such as crystallinity, grain size, and phase, where slightly doping of Ni strongly enhanced the dielectric constant [91]. In addition, Yan et al. reported that the dielectric constant of Fe-doped Ba(Zr<sub>0.1</sub>Ti<sub>0.9</sub>)O<sub>3</sub> materials increased with decreasing compressive stresses and/or with increasing tensile stresses [92]. Our structural and microstructural studies on the Ni-doped BZT materials indicated that the lattice parameters tended to be compressed while the grain size was reduced as increasing the Ni doping concentrations. Therefore, at this moment, we could not conclude the main

**Fig. 8** a Frequency dependence of dielectric constant,  $\varepsilon_{r}$ , of BZT and Ni-doped BZT samples with Ni concentration in the range of 0.5-9 mol%; **b** variation in dielectric constant measured at RT and 10 kHz frequency of Ni-doped BZT samples as a function of Ni concentration



reason for the observation of the complex dielectric properties of the Ni-doped BZT materials. Note that the natural defects of oxygen vacancies always existed in perovskite oxide materials. Thus, we suggested that low Ni concentrations exhibited defect complexes formed between Ni cations and natural defects of oxygen vacancies in BZT materials, e.g.,  $N\dot{i}_{T}V_{O}N\dot{i}_{T}$ , resulting in enhancement of the dielectric constant because of reduction of free electrons generated from oxygen vacancies. However, with further doping of Ni cations into the host BZT crystal, the oxygen vacancies were created and increased simultaneously with increasing the Ni concentrations because of unbalanced valence states between Ni<sup>2+/3+</sup> impurity cations substituted for Ti<sup>4+</sup> cations. Increasing the amounts of oxygen vacancies and reduction in grain size as increasing the Ni concentrations in BZT materials led to decreasing the dielectric constant of BZT compounds as increasing the Ni concentrations. In addition, our X-ray diffraction studies on the influence of the Ni-doped BZT compounds showed that the lattice parameters of the BZT compounds tended to be compressed as increasing the Ni doping concentrations in BZT materials. The electron hopping between Ti<sup>3+</sup> and Ti<sup>4+</sup> cations was easier than that without doping. However, the defect complex between Ni<sup>2+/3+</sup> and oxygen vacancies (Ni<sup>2+/3+</sup>- $V_{O}$ ) has dipole moment which could be oriented to align dipole along the direction of the applied electric field, resulting to would contribute to the dielectric process. As a result, the improvement in the dielectric constants in Ni-doped BZT materials overcomes by that of the pure BZT materials.

The influence of Ni doping amounts on the polarization of BZT materials as a function of the applied external electrical field was studied. Figure 9a–g shows polarization-electric field hysteresis loops (P-E curves) of the pure BZT and BZT-xNi samples with x = 0.5, 1, 3, 5, 7, and 9 mol%, respectively, indicating unsaturation polarization under applied external electrical field at RT of all samples. The electrical remanent polarization  $(P_r)$ and coercive field  $(E_{\rm C})$  of the pure BZT compound were estimated at around 3.32 µC/cm<sup>2</sup> and 0.59 kV/mm, respectively, which confirmed the natural ferroelectric property of BZT materials. With randomly incorporating Ni cations into the BZT host lattice, slim P-E curves were obtained and both  $P_r$  and  $E_c$  values were reduced. For the BZT-0.5Ni sample, the  $P_r$  and  $E_C$  values were decreased to 0.71  $\mu C/cm^2$  and 0.36 kV/mm, respectively. For the BZT-9Ni sample, doped with 9 mol% Ni, the  $P_r$  and  $E_c$  values were estimated around 0.03 µC/cm<sup>2</sup> and 0.05 kV/mm, respectively, indicating a strong reduction in the ferroelectric properties. The addition of Ni impurities into the host BZT compounds decreased the ferroelectric properties of the host BZT compounds, which were well understood via theoretical prediction [93]. Based on the first principle calculation for the compensative interaction between ferroelectric and ferromagnetic states in the perovskite structure, Hill et al. reported that the ferroelectric state required an empty 3d-orbital state for off-center distortion, while the ferromagnetic state was adapted for partially filling of electrons in the 3d orbital [93]. Consequently, the random distribution of Ni cations at Ti sites reduced the ferroelectric polarization and ferroelectric performance of the host BZT materials; the more the Ni doping, the slimmer the P-E hysteresis as shown in Fig. 8. Moreover, the unsaturation polarization shown in P-E curves of all studied samples was likely derived from surface



Fig. 9 Polarization hysteresis loops at room temperature of **a** pure BZT compounds and Ni-doped BZT with various levels of Ni dopants: **b** 0.5, **c** 1, **d** 3, **e** 5, **f** 7, and **g** 9 mol%

effect and impurity defects. Our microstructural study of the influence of Ni-doped BZT compounds showed that surface morphology was inhomogeneous at nano-size. The large surface area with defects induced low conductivity, thereby increasing the leakage current [94]. As a result, it was difficult to polarize the samples to a high electric field. By increasing the Ni concentrations, large amounts of oxygen vacancies were created via random incorporation of  $Ni^{2+/3+}$  with the  $Ti^{4+}$  sites, which exhibited large leakage currents in polarized samples at a high external electric field, resulting in unsaturation in the *P*–*E* hysteresis loop. Moreover, the crystal structure of BZT and Ni-doped BZT compounds indicated that the lattice parameter tended to shrink as the amount of Ni dopants increased. Therefore, we suggested that under an external electrical field, electron hopping between the  $Ti^{4+} \leftrightarrow Ti^{3+}$ ,  $Ni^{2+/3+} \leftrightarrow Ti^{3+}$ . and/or  $Ni^{2+/3+} \leftrightarrow Ni^{2+/3+}$  was easier for Ni-doped BZT compounds than that between  $Ti^{4+} \leftrightarrow Ti^{3+}$  of pure BZT compounds, resulting in unsaturation and slim P-E hysteresis loops [95, 96]. The reduction in  $P_r$  and  $E_C$  values of BZT compounds by Ni doping indicated that the ferroelectric performance of BZT compounds decreased. However, the observation in non-rezo  $P_r$  and  $E_c$  values of BZT compounds doped up to 9 mol% Ni confirmed that ferroelectric remained but was weak. While the combination of multiferroic orders in one-phase materials is still a challenge in current research, our observations clearly showed stable ferroelectric properties at RT in the ferromagnetic state of Ni-doped BZT compounds.

# 4 Conclusions

To conclude, biferroic Ni-doped BZT compounds were successfully prepared via a chemical route. Self-defects and/or surface defects caused the weak ferromagnetism and compensated the natural diamagnetism in pure BZT compounds. The diamagnetism of BZT compounds tended to suppress the ferromagnetic state after Ni doping. The ferroelectric state of pure BZT compounds remained unchanged with the introduction of Ni impurity. The influence of surface defects and Ni defects reduced the BZT's ferroelectric performance. We hypothesized that both ferroic states of green ferroelectric Ni-doped BZT compounds could be used in novel smart electronic devices.

Acknowledgements This research is funded by The Ministry of Science and Technology, Viet Nam, under project number DTDLCN.29/18 and this research was partially supported by the Ministry of Education and Training, Vietnam, under project number B2018-BKA-10-CtrVL.

#### Declaration

Conflict of interest The author(s) declare no competing interests.

### References

- H. Wei, H. Wang, Y. Xia, D. Cui, Y. Shi, M. Dong, C. Liu, T. Ding, J. Zhang, Y. Ma, N. Wang, Z. Wang, Y. Sun, R. Wei, Z. Guo, J. Mater. Chem. C 6, 12446–12467 (2018)
- 2. WHO, Lead poisoning and health, 23 August 2019. https://www. who.int/news-room/fact-sheets/detail/lead-poisoning-and-health
- T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, E. Longo, M.S. Li, J. Phys. D Appl. Phys. 42, 175414 (2009)
- D.E. Kotecki, J.D. Baniecki, H. Shen, R.B. Laibowitz, K.L. Saenger, J.J. Lian, T.M. Shaw, S.D. Athavale, C. Cabral, P.R. Duncombe, M. Gutsche, G. Kunkel, Y.J. Park, Y.Y. Wang, R. Wise, IBM, J. Res. Dev. 43, 367–382 (1999)
- E. A. Fardin, K. Ghorbani, and A. S. Holland, TENCON 2005 2005 IEEE Region 10, 1–4 (2005).
- J. Jones, P. Zurcher, P. Che, D. Tayolr, Y. Lii, B. Jiang, P. Maniar, S. Gillespie, Microelectro. Eng. 29, 3–10 (1995)
- O. Auciello, S. Saha, D. Kaufman, S. Streiffer, W. Fan, B. Kabius, J. Im, P. Baumann, J. Electroceram. 12, 119–131 (2004)
- A. Bootchanont, J. Jutimoosik, S. Chandarak, M. Unruan, S. Rujirawat, R. Yimnirun, R. Guo, A. Bhalla, Ceram. Inter. 39, S579–S582 (2013)
- 9. J. Bera, S.K. Rout, Mater. Lett. 59, 135-138 (2005)
- 10. Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 88, 410-415 (2000)
- 11. Z. Yu, C. Ang, R. Guo, A.S. Bhalla, J. Appl. Phys. **92**, 1489–1493 (2002)
- 12. S. Mahajan, O.P. Thakur, C. Prakash, K. Sreenivas, Bull. Mater. Sci. 34, 1483–1489 (2011)
- X.D. Huang, J.K.O. Sin, P.T. Lai, IEEE Electron Dev. Lett. 34, 499–501 (2013)
- L. Liu, S. Ren, J. Zhang, B. Peng, L. Fang, D. Wang, J. American Ceram. Soc. 101, 2408–2416 (2018)
- M. Veith, S. Mathur, N. Lecerf, V. Huch, T. Decker, J. Sol gel Sci. Tech. 15, 145–158 (2000)
- D. Milicevic, K. Nikolic, J. Vukmirovic, N. Samardzic, V. V. Srdic, and G. Stojanovic, (2020) Resistive switching and synaptic behavior in zinconium doped thin film metal-oxide-metal devices. In: 23rd International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS). Doi: https://doi.org/ 10.1109/DDECS50862.2020.9095643.
- 17. N.A. Spaldin, R. Ramesh, Nature Mater. 18, 203-212 (2019)
- 18. S. Shevlin, Nature Mater. 18, 191–192 (2019)
- M.M. Vopson, J. Crit. Rev. Solid State Mater. Sci. 40, 223–250 (2015)
- D.D. Dung, N.B. Doan, N.Q. Dung, N.H. Linh, L.H. Bac, L.T.H. Thanh, N.N. Trung, N.V. Duc, L.V. Cuong, D.V. Thiet, S. Cho, J. Supercond. Novel Magn. 32, 3011–3018 (2019)
- D.D. Dung, N.B. Doan, N.Q. Dung, L.H. Bac, N.H. Linh, L.T.H. Thanh, D.V. Thiet, N.N. Trung, N.C. Khang, T.V. Trung, N.V. Duc, J. Sci.: Adv. Mater. Dev. 4, 584–590 (2019)
- D.D. Dung, N.Q. Dung, N.B. Doan, N.H. Linh, L.H. Bac, N.N. Trung, N.V. Duc, L.T.H. Thanh, L.V. Cuong, D.V. Thiet, S. Cho, J. Supercond. Novel Magn. 33, 911–920 (2020)
- L.T.H. Thanh, N.B. Doan, L.H. Bac, D.V. Thiet, S. Cho, P.Q. Bao, D.D. Dung, Mater. Lett. 186, 239–242 (2017)

- L.T.H. Thanh, N.B. Doan, N.Q. Dung, L.V. Cuong, L.H. Bac, N.A. Duc, P.Q. Bao, D.D. Dung, J. Electron. Mater. 46, 3367– 3372 (2017)
- D.D. Dung, D.V. Thiet, D. Odkhuu, L.V. Cuong, N.H. Tuan, S. Cho, Mater. Lett. 156, 129–133 (2015)
- L.V. Cuong, N.H. Tuan, D. Odkhuu, D.V. Thiet, N.H. Dung, L.H. Bac, D.D. Dung, Appl. Phys. A **123**, 563 (2017)
- N.H. Tuan, D.V. Thiet, D. Odkhuu, L.H. Bac, P.V. Binh, D.D. Dung, Phys. B 532, 108–114 (2018)
- D.V. Thiet, D.D. Cuong, L.H. Bac, L.V. Cuong, H.D. Khoa, S. Cho, N.H. Tuan, D.D. Dung, Mater. Trans. 56, 1339–1343 (2015)
- N.H. Tuan, V.K. Anh, N.B. Doan, L.H. Bac, D.D. Dung, D. Odkhuu, J. Sol gel Sci. Tech. 87, 528–536 (2018)
- J.A. Astudillo, S.A. Dionizio, J.L. Izquierdo, O. Moran, J. Heiras, G. Bolanos, AIP Adv. 8, 055817 (2018)
- D. Nie, J. Zhang, W.J. Deng, X. Chen, Z.Q. Mao, L.Y. Tang, Chinese. J. Chem. Phys. 30, 97–102 (2017)
- M. Manikandan, C. Venkateswaran, AIP Conf. Proc. 1665, 130036 (2015)
- I.S. Golovina, B.D. Shanina, S.P. Kolesnik, I.N. Geifman, A.A. Andriiko, J. Appl. Phys. 114, 174106 (2013)
- 34. R.P. Tiwari, B. Birajdar, AIP Conf. Proc. 1942, 030014 (2018)
- 35. B. Deka, S. Ravi, A. Perumal, D. Pamu, Phys. B **448**, 204–206 (2014)
- S. Ray, Y.V. Kolenko, K.A. Kovnir, O.I. Lebedev, S. Turner, T. Chakraborty, R. Erni, T. Watanabe, G.V. Tendeloo, M. Yoshimura, Nanotechnology 23, 025702 (2012)
- 37. S.K. Das, R.N. Mishra, B.K. Roul, Solid State Communi. **191**, 19–24 (2014)
- X. Tong, Y.H. Lin, S. Zhang, Y. Wang, C.W. Nan, J. Appl. Phys. 104, 066108 (2008)
- 39. J. Shah, R.K. Kotnala, J. Mater. Chem. A 1, 8601-8608 (2013)
- J.Y. Son, J.H. Lee, S. Song, Y.H. Shin, H.M. Jang, ACS Nano 7, 5522–5529 (2013)
- 41. I.A. Starkov, G. Suchaneck, A.S. Starkov, G. Gerlach, Ferroelectrics **556**, 8–15 (2020)
- 42. Y. Zhang, H. Sun, W. Chen, J. Phys. Chem. Solids **114**, 207–219 (2018)
- D.D. Dung, N.Q. Huy, N.H. Tuan, N.D. Quan, L.T. Lan, N.H. Linh, N.H. Thoan, N.N. Trung, L.H. Bac, Mater. Lett. 283, 128897 (2021)
- D.D. Dung, N.H. Tuan, C.T.T. Trang, N.Q. Huy, L.H. Bac, N.N. Thoan, N.D. Quan, N.N. Trung, N.H. Linh, Appl. Phys. A 127, 61 (2021)
- D.D. Dung, N.H. Tuan, N.D. Quan, N.Q. Huy, C.T.T. Trang, N.H. Thoan, N.N. Trung, N.T. Trang, L.H. Bac, Res. Phys. 19, 103535 (2020)
- 46. D.D. Dung, N.T. Hung, D. Odkhuu, Sci. Rep. 9, 18186 (2019)
- 47. D.D. Dung, N.T. Hung, Appl. Phys. A 126, 240 (2020)
- N.H. Tuan, L.H. Bac, L.V. Cuong, D.V. Thiet, T.V. Tam, D.D. Dung, J. Electron. Mater. 46, 3472–3478 (2017)
- D.D. Dung, N.Q. Dung, M.M. Hue, N.H. Lam, L.H. Bac, L.T.K. Phuong, N.N. Trung, D.D. Tuan, N.D. Quan, D. Sangaa, D. Odkhuu, Vacuum **179**, 109551 (2020)
- 50. R.D. Shannon, Acta. Cryst. A 32, 751-767 (1976)
- C. Chatzichristodoubou, P. Norby, P.V. Hendriksen, M.B. Mogensen, J. Electroceram. 34, 100–107 (2015)
- Z. Chen, C. Yuan, X. Liu, L. Meng, S. Cheng, J. Xu, C. Zhou, J. Wang, G. Rao, Mater. Sci. Semicond. Proc. **115**, 105089 (2020)
- 53. U. Holzwarth, N. Gibson, Nature Nanotech. 6, 534 (2011)
- 54. H. P. Klug, and L. E. Alexander, (1974) *X-Ray Diffraction Procedures*, 2nd edn., Chap. 9 Wiley, London.
- 55. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102–113 (1978)
- T. Badapanda, V. Senthil, S. Panigrahi, S. Anwar, J. Electroceram. 31, 55–60 (2013)

- H. Hayashi, T. Nakamura, T. Ebina, J. Phys. Chem. Solids 74, 957–962 (2013)
- A. Scalabrin, A.S. Chaves, D.S. Shim, S.P.S. Porto, Phys. Status Solidi B 79, 731–742 (1977)
- M. Singh, B.C. Yadav, A. Ranjan, M. Kaur, S.K. Gupta, Sen. Act. B 241, 1170–1178 (2017)
- L.P. Campos, D.E.D. Droguett, R. Lavin, S. Fuentes, J. Molec. Struct. 1099, 502–509 (2015)
- V. Vinothini, B. Vaidhyanathan, J. Binner, J. Mater. Sci. 46, 2155–2161 (2011)
- A. Dixit, S.B. Majumder, P.S. Dobal, R.S. Katiyar, A.S. Bhalla, Thin Solid Films 447, 284–287 (2004)
- L. Ramajo, M. Reboredo, M. Castro, Compos. A 36, 1267–1274 (2005)
- V. Buscaglia, S. Tripathi, V. Petkov, M. Dapiaggi, M. Deluca, A. Gajović, Y. Ren, J. Phys. Cond. Matter. 26, 065901 (2014)
- J. Pokorný, U. Pasha, L. Ben, O. Thakur, D. Sinclair, I. Reaney, J. Appl. Phys. 109, 114110 (2011)
- R. Kumar, K. Asokan, S. Patnaik, B. Birajdar, J. Alloys Compound. **737**, 561–567 (2018)
- L.H. Bac, L.T.H. Thanh, N.V. Chinh, N.T. Khoa, D.V. Thiet, T.V. Trung, D.D. Dung, Mater. Lett. 164, 631–635 (2016)
- L.S. Cavalcante, J.C. Sczancoski, F.S.D. Vicente, M.T. Frabbro, M.S. Li, J.A. Varela, E. Longo, J. Sol-Gel Sci. Technol. 49, 35–46 (2009)
- Y. Umeda, K. Takano, T. Kojima, A. Kuwabara, H. Moriwake, Jpn. J. Appl. Phys. 51, 09LE01 (2012)
- L.S. Cavalcante, V.M. Longo, M. Zampieri, J.W.M. Espinosa, P.S. Pizani, J.R. Sambrano, J.A. Varela, E. Longo, M.L. Simões, C.A. Paskocimas, J. Appl. Phys. **103**, 063527 (2008)
- A. Kheyrdan, H. Abdizadeh, A. Shakeri, M.R. Golobostanfard, J. Sol Gel Sci. Tech. 86, 141–150 (2018)
- J.Z. Xin, C.W. Leung, H.L.W. Chan, Thin Solid Films 519, 6313–6318 (2011)
- M.M. Hue, N.Q. Dung, N.N. Trung, L.H. Bac, L.T.K. Phuong, N.V. Duc, D.D. Dung, Appl. Phys. A **124**, 588 (2018)
- D.D. Dung, M.M. Hue, N.Q. Dung, L.T.K. Phuong, L.H. Bac, N.X. Duong, P.D. Luong, N.A. Duc, N.N. Trung, N.H. Thoan, D. Odkhuu, Vacuum **177**, 109306 (2020)
- 75. D.L. Wood, J. Tauc, Phys. Rev. B 5, 3144 (1972)
- G. Suchaneck, E. Chernova, A. Kleiner, R. Liebschner, L. Jastrabik, D.C. Mayer, A. Dejneka, G. Gerlach, Thin Solid Films 621, 58–62 (2017)
- 77. Z.X. Yin, W.Y. Hua, Z. Min, Z. Na, G. Sai, C. Qiong, Chin. Phys. Lett. **28**, 067101 (2011)
- S. Lee, R.D. Levi, W. Qu, S.C. Lee, C.A. Randall, J. Appl. Phys. 107, 023523 (2010)
- D.D. Dung, N.H. Lam, A.D. Nguyen, N.N. Trung, N.V. Duc, N.T. Hung, Y.S. Kim, D. Odkhuu, Sci. Rep. 11, 8908 (2021)
- B. Song, X. Wang, C. Xin, L. Zhang, B. Song, Y. Zhang, Y. Wang, J. Wang, Z. Liu, Y. Sui, J. Tang, J. Alloys Compound. **703**, 67–72 (2017)
- S.B. Ogale, R.J. Choudhary, J.P. Buban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simson, N.D. Browning, S.D. Sarma, H.D. Drew, R.L. Greene, T. Venkatesan, Phys. Rev. Lett. **91**, 077205 (2003)
- N.H. Hong, J. Sakai, A. Hassini, Appl. Phys. Lett. 84, 2602– 2604 (2004)
- Y.R. Park, S.L. Choi, J.H. Lee, K.J. Kim, J. Korean Phys. Soc. 50, 638–642 (2007)
- 84. S.K. Pradhan, S.K. De, Ceram. Inter. 44, 15181-15191 (2018)
- V.N. Thakur, B.P. Singh, S. Yadav, A. Kumar, RSC Adv. 10, 9140–9145 (2020)
- W.J. Jie, J. Zhu, W.F. Qin, X.H. Wei, J. Xiong, Y. Zhang, A. Bhalla, Y.R. Li, J. Phys. D: Appl. Phys. 40, 2854–2857 (2007)

- Z. Yuan, Y. Lin, J. Weaver, X. Chen, C.L. Chen, G. Subramanyam, J.C. Jiang, E.I. Meletis, Appl. Phys. Lett. 87, 152901 (2005)
- P. Li, W. Li, S. Liu, Y. Zhang, J. Zhai, H. Chen, Ceram. Inter. 41, S344–S348 (2015)
- M.M. Hejazi, E. Taghaddos, A. Safari, J. Mater. Sci. 48, 3511– 3516 (2013)
- E. Aksel, E. Erdem, P. Jakes, J.L. Jones, R.d.A. Eichel, Appl. Phys. Lett. 97, 012903 (2010)
- 91. W. Cai, J. Gao, C. Fu, L. Tang, J. Alloys Compound. **487**, 668–674 (2009)
- 92. S. Yan, Z. Zheng, Y. Li, W. Dun, Y. Wang, Ceram. Inter. 43, 12605–12608 (2017)

- 93. N.A. Hill, J. Phys. Chem. B 104, 6694-6709 (2000)
- C. Mathieu, C. Lubin, G.L. Doueff, M. Cattelan, P. Gemeiner, B. Dkhil, E.K.H. Salje, N. Barrett, Sci. Rep. 8, 13660 (2018)
- Z. Pan, J. Chen, X. Jiang, Z. Lin, L. Zhang, L. Fan, Y. Rong, L. Hu, H. Liu, Y. Ren, X. Kuang, X. Xing, Inorg. Chem. 56, 2589–2595 (2017)
- E.V. Ramana, F. Figueiras, A. Mahajan, D.M. Tobaldi, B.F.O. Costa, M.P.F. Graca, M.A. Valente, J. Mater. Chem. C 4, 1066– 1079 (2016)

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.