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Abstract— Collecting and analyzing weed data is crucial, but it is a real challenge to cover a large area of fields or farms while 
minimizing the loss of plant and weed information. In this regard, Unmanned Aerial Vehicles (UAVs) provide excellent survey 
capabilities to obtain images of the entire agricultural field with a very high spatial resolution and at a low cost. This paper addresses 
the practical problem of the weed segmentation task using a multispectral camera mounted on a UAV. We propose the method to 
find the ideal workflow and system parameters for UAVs to maximize field crop coverage while providing data for reliable and 
accurate weed segmentation. Around the segmentation task, we examine several Convolutional Neural Networks (CNNs) 
architectures with different states (fine-tune) to find the most effective one. Besides that, our experiment using Near-infrared (NIR) 
and Normalized Difference Vegetation Index (NDVI) -the foremost spectroscopies - as an indicator of the vegetation density, health, 
and greenness. We implemented and evaluated our system on two farms, sugar beet and papaya, to conclude based on each stage of 
crop growth.  
Keywords— UAV, weed segmentation, deep learning, spectroscopy 

I. INTRODUCTION 
Precision agriculture (PA) can be defined as the science of 

improving crop yields and assisting management decisions 
using high technology sensors and analysis tools [1]. PA 
spatially surveying critical health indicators of crop and 
applying treatment, e.g., herbicides, pesticides, and fertilizers, 
only to relevant areas. Because of that, weed treatment is a 
critical step in PA as it directly associates with crop health and 
yield. To overcome the above problem, in PA practices, Site-
Specific Weed Management (SSWM) is used [2] SSWM 
focused on dividing the field into management zones where  
each one receives customized management.  Therefore, it is 
necessary to generate an accurate weed cover map for precise 
herbicide spraying. Hence, we need to collect high-resolution 
data image data of the whole field. These images are usually 
captured by two traditional platforms, satellite, and manned 
aircraft. However, these conventional platforms present 
problems related to temporal and spatial resolution, and the 
successful use of these platforms is dependent on weather 
conditions [3].  

In recent years, along with the development of science and 
technology, Unmanned Aerial Vehicles (UAVs) are 
considered a suitable replacement for image acquisition. The 
use of UAVs to monitor crops offers excellent possibilities to 
acquire field data in an easy, fast, and cost-effective way 
compared to previous methods. UAVs can fly at low altitudes 
and take ultra-high spatial resolution imagery (i.e., a few 
centimeters), allowing observing small individual plants and 
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patches that are not possible with satellites or piloted aircraft 
[4]. This significantly improves the performance of the 
monitoring systems, especially in monitoring and detecting 
weeds systems. UAVs can serve as an excellent platform to 
obtain fast and detailed information on arable land when 
equipped with various sensors. From an orthomosaic map, 
producers can make beneficial decisions in terms of money 
and time, monitor the health of plants, get records quickly and 
accurately on damage or identify potential problems in the 
field. Moreover, this information is also essential data that 
enables new technologies such as machine learning, deep 
learning, etc., to improve productivity in precision agriculture. 

 Section II presents some common types of UAVs used in 
the agriculture robotics domain and covers related works 
using CNN models with multispectral images. Section III 
describes our proposed method on an available public dataset 
and details of our deep learning model. Section IV concludes 
two parts: i) the result of the public dataset, and ii) the 
procedure for acquiring, calibrating, and evaluating 
experimental datasets under real conditions. At last, section V 
concludes the paper.   

II. RELATED WORK 
In PA, UAVs are inexpensive and easy to use compared to 

satellites and manned-aircrafts, though limited by insufficient 
engine power, short flight duration, difficulty in maintaining 
flight altitude, and aircraft stability [5], [6]. In general, the 
payload capacity of the UAVs is about 20-30% of its total 
weight [7], which significantly governs the type of operation 
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that can be performed with the system. Three major UAVs 
type can be used for precision weed management: fixed-wing, 
rotary-wing, and blimps. But the ability to hover in the air and 
agile manoeuvring makes rotary-wing well-suited to 
agriculture field inspections. This ability makes rotary-wing 
UAVs take ultra-high-resolution images and map small 
individual plants and patches [8]. Although fixed-wing UAVs 
can fly with high speed [9] and greater payload capacities than 
the rotary-wing platform, leading to images with coarse-
spatial resolution and poor image overlap. Besides fixed-wing 
and rotary-wing, blimps are also used for obtaining aerial 
imagery [10]. Blimps are simple UAV platforms where the lift 
is provided by helium.  However, they are not stable under 
high-speed conditions [11], and the development of highly 
sophisticated aerial systems (i.e., fixed- and rotary-wing 
UAVs) are maneuvered easily and attached with in-built 
sensors/cameras. Because of that, the use of blimps has 
declined in agricultural applications. 

 Moreover, one of the most critical parameters in a UAV 
flight is the altitude above ground level (AGL). It defines the 
pixel size on the captured images, flight duration and coverage 
area. It is crucial to determine the spatial quality required for 
orthomosaics to obtain the ideal pixel size in the images. 
According to Hengl [12], detecting the smallest object in an 
image generally requires at least four pixels. When choosing 
altitude AGL, the spatial resolution must be good enough 
while covering as many surfaces as possible. Low altitude 
AGL UAV flights can produce high-resolution images but are 
limited in the coverage area, thereby increasing flight 
duration. Therefore, the operation of UAVs is broken down 
into several flights due to battery life, causing a change in light 
condition, the unstable appearance of shade, etc. 

Several works have been directed using RGB beside 
multispectral imagery of farming fields to face the substantial 
similarity in weeds and crops for weed detection technology. 
[13] using Excess Green Vegetation Index (ExG) [14] and the 
Otsu’s thresholding [15] to remove background (soil, 
residues). After that, the authors applied a double Hough 
transform [16] to identify the maincrop lines. To specify crops 
and weeds, they applied the region-based segmentation 
method forming a blob coloring analysis. The crop will be any 
region with at least one pixel belonging to the detected lines; 
the remaining area means weed. Lambert et al. [17] apply the 
green normalized differential vegetation index (GNDVI) to 
classify. The reason for their choice is that high biomass crops 
such as wheat cause saturation of chlorophyll levels in the red 
wavelength, resulting in poor performance when using the 
normalized differential vegetation index (NDVI) [18]. 

Image segmentation aims to learn information in a given 
image at a pixel level, an essential but challenging task. In 
recent years, convolutional neural networks (CNN) have risen 
as a potent tool for computer vision tasks. The creation of the 
AlexNet network in 2012 had shown that a large, deep CNN 
could achieve record-breaking results on a challenging dataset 
using supervised training [19]. For example, in [20] and [21], 
authors apply AlexNet for weed detection in different crop 
fields: soybean, beet, spinach, and bean. Mortensen et al. [22] 
using a modified version of VGG-16 on the segmentation task 
of mixed crops from oil radish plots with barley, grass, weed, 
stump, and soil. However, these methods have a poor 
performance with low-resolution images because of the 
sequential max-pooling and down-sampling layers. To solve 
this issue, U-Net [23] has the mechanic that contracted 

features will reconstruct the image to input resolution. This 
paper uses a model based on this U-Net architecture (detailed 
in Section III-C1). 

III. METHODS 

A. System overview 
The main target of the proposed UAV system is to identify 

plants and weeds in UAV imagery, thereby providing a tool 
for precisely monitoring real fields. In the following, we will 
discuss general steps in the preliminary analysis and 
preparation of the data collection process. 

 
Fig. 1. General overview of the UAVs system used in the image collection 
process 

First of all, it is essential to guarantee safety and accuracy 
before flying. Devices such as UAVs, computers, and 
controllers must be checked to see if it is working correctly to 
avoid system breakdowns and failures due to malfunctions. 
After that, several parameters need to be calibrated to ensure 
the UAV is in good condition and ready for take-off. 
Typically, an inertial measurement unit (IMU), compass, and 
camera are the things that need calibration. The IMU, 
including the accelerometer, needs to be calibrated first to 
establish the standard altitude of the UAV and minimize errors 
due to inaccurate sensor measurements. Then there is the 
compass, making sure to avoid potential sources that could 
affect the magnetometer. For cameras, it is necessary to 
determine the lens parameters and the types of multispectral 
cameras before flying. In our case, UAV needs a 2-band 
multispectral camera (red channel at 660 nm and near-infrared 
(NIR) at 790 nm) as the minimum required to extract NDVI 
imagery, a central element in the soil separation task. 

In our UAV system, the pilot can serve as Ground Control 
Point (GCP) to control and send UAV commands from the 
ground. The UAV sends the real-time images streaming to 
GCP while in the air; it moves between pre-scheduled 
waypoints while taking pictures on the ground. Figure 1 
illustrates the overview UAVs system using in the image 
collection process. 

B. Dataset and Data Augmentation 
This paper uses the crop/weed dataset from a controlled 

field experiment [24] containing pixel-level annotations of 
sugar beet and weed images. A multispectral camera Sequoia 
mounted on a DJI Mavic – commercial MAV, recording 
datasets at 1 Hz and 2-meter height. A total of 149 images 
were captured in 3 separate field patches: crop-only, weed-
only, and mixed. Each training/test image consisted of the red 
channel, NIR, and NDVI imagery. 
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The role of the NDVI spectrum is crucial in the soil 
segmentation task. The following examples will clarify the 
importance of NDVI imagery compared to the red channel or 
NIR in this task. In NIR, we hardly indicate the difference 
between soil and plant/weed. The red channel image can 
easily identify the contrast, but it depends on the light 
conditions when collecting data, causing instability and 
consistency during training. On the other hand, NDVI imagery 
is based on how plants reflect certain electromagnetic 
spectrum ranges, making non-plant materials like soil easily 
separated. Although the primary contribution of NDVI is used 
as an indicator of vegetation density, health, and greenness, it 
has shown excellent results in the ground segmentation task. 

Red 

  
NIR NDVI 

  
Fig. 2. Red in good light condition (top-left) and bad light condition (top-
right). Bottom-left is NIR, and the bottom-right is NDI. 

Next, we need to focus on the most crucial task: the 
distinction between weed and plant. As mentioned before, the 
training dataset is divided into crop-only and weed-only. The 
plant has broad leaves, thin twigs, while the weed is small in 
size and distributed in clusters. It makes the recognition more 
straightforward in the training process with an individual 
object. In that case, traditional computer vision or machine 
learning techniques like the random forest or support vector 
machine can get the task done. However, while plants often 
overlap with weeds in practical matters, pixel-by-pixel 
classification becomes difficult. To address this issue, we 
decided to use a more advanced solution: a deep learning 
model due to its robust feature learning and end-to-end 
training. 

Plant Weed Overlap 

   
Fig. 3. Individual object: plant (left), weed (middle) and overlapping objects 
(right). 

In our opinion, this dataset has two problems: (i) the 
quantity is not sufficiently large, and (ii) it impedes the 
training phase when separating the whole field to crop or 
weed-only part. To understand these problems, we need to 

emphasize that deep learning is a powerful tool that can 
successfully solve many issues related to computer vision. 
However, one of the significant limitations of this method is 
the need for large datasets to obtain excellent performance and 
generalization. Small data can exacerbate specific issues, like 
overfitting, measurement error, and especially in our case, 
sampling bias—the weed-only image up to 65% of the entire 
training set. Therefore, we propose a data augmentation 
strategy that enriches and removes the bias in this dataset. 

TABLE I. NUMBER OF IMAGES AFTER APPLYING DATA AUGMENTATION  

Subset Original dataset Augmented dataset 
Training 125 3564 
Testing 24 24 
Total 149 3588 

The purpose of this strategy is to combine crop-only and 
weed-only image pairs into one. First, morphological 
transformations (dilation and erosion) are applied to the crop-
only images to remove noise and join separate parts. Then we 
find external contours, followed by drawing a rectangle mask 
for each of them. Finally, we use the alpha blending technique 
(alpha=1) to overlay the crop over the weed image. Figure 4 
illustrates the augmentation strategy, and each class is labeled 
as follows {background, crop, weed} = {black, green, red}. 
The number of images generated after using data 
augmentation is shown in Table I. 

 
Fig. 4. Example of data augmentation. 

C. Modified U-Net Architecture with residual unit 
1) U-Net 
U-Net is a deep learning model proposed for the image 

segmentation task. Its architecture creates a route for 
information propagation, thus using low-level details while 
retaining high-level information. It has the contraction 
(encoder) and expansion (decoder) paths, creating the unique 
U-shape. Each encoder layer comprises two convolution 
layers with Rectified Linear Units (ReLU) activation 
functions followed by max-pooling operation. Stacks of those  
layers will learn features of increasing complexity levels while 
simultaneously performing downsampling. On the other hand, 
the decoder up-sample also appends feature maps of the 
corresponding encoder to combine global information with 
precise localization. The network's output has the same width 
and height as the original image, with a depth indicating each 
label's activation. For our segmentation mission, there are 
three classes: crop, weed, and soil. 
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2) Hybrid with the residual unit 
Training neural networks with many deep layers would 

improve the model performance. However, that depth usually 
causes the vanishing gradient problem and makes it unable to 
propagate useful gradient information throughout the model. 
To address the degradation problem, He et al. [25] introduced 
a deep residual learning framework. Instead of letting layers 
learn the underlying mapping H(x) where x is the input of the 
first layer, the network will fit F(x) = H(x)-x which gives H(x) 
= F(x) + x. Although both methods could approximate the 
desired functions, the ease of training with residual functions 
is much better. With all that said, the model we use in this 
paper combines the strengths of both U-Net and the residual 
unit (ResBlock), and we call it the ResUNet model. 

IV. EXPERIMENTAL RESULTS 

A. Dataset Result 
For quantitative evaluation, we use the F1 score (3) as the 

harmonic mean of the recall and precision, which gives an 
overall result on the network’s positive labels.  

 
𝐹1 = 2.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	. 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

(3) 

Where precision measures how accurate the neural network 
was at positive observations, and recall measures how 
effectively the neural network identified the target. 

TABLE II. Performance comparison of 6 models 

Resolution 
F1 Score (%) 

CNN DeepLabV3 HSCNN UNet SegNet ResUNet 

256 x 256 64.29 58.01 66.36 66.16 69.11 73.87 

512 x 512 66.76 68.91 77.15 77.78 75.23 80.56 

NIR RED NDVI Ground truth Prediction Difference  

      

 

      

 

      

 

      

 

      

 

      

 

      

 

Fig. 5. Result of some examples (row-wise). The first three columns are the input of the model. The fourth and fifth columns are showing ground truth 
and the prediction. The last column is the difference between ground truth and prediction mask.
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Table II shows the results of the proposed method. We 
chose to experiment with multiple resolutions because we 
wanted to simulate the altitude of the UAV when collecting 
data: lower resolutions taken at high altitudes would cover a 
wider field, thereby reducing sampling time. However, in 
return, it will lose detailed features of crops and weeds, 
directly affecting the final result of models. 

In Sections II and III-C, we have presented the strengths 
and limitations of the models. The experimental results in 
Table II have demonstrated that CNNs are not suitable for 
complex tasks like segmentation. In contrast, ResUNet has 
shown its superiority when increasing accuracy by 3-4% 
compared to the second-best model. However, the numbers 
cannot summarize the entire results. We need to have specific 
illustrations to analyze this result more closely. 

For visual examination, we present some examples of 
input data and the difference between ground truth and model 
probability (Fig. 5). The 3-channel input image is represented 
by the first three columns of spectral types: NIR, RED, and 
NDVI. The following two columns are the ground-truth 
annotation image and our probability output; each class is 
labeled as follows {background, crop, weed} = {black, green, 
red}. Finally, the last column gives a detailed look at the 
mistakes we encountered. The difference between ground 
truth and prediction images is shown in white pixels; the fewer 
white pixels an image has, the more accurate it is. It can be 
seen that misclassification areas of weed and crop appear with 
a low number. That case mainly occurs when dense areas of 
these two types overlap. This shows that our model needs 
improvement in some parameters, but overall the 
classification results are satisfactory. Besides that, there is 
significant misclassification in boundary areas occurring in 
both crops and weeds. In our opinion, the proposed spatial 
resolution and sampling frequency in the data acquisition 
process are not suitable. The poor spatial resolution makes the 
data not detailed enough to feed the segmentation model. High 
sampling frequency causes motion-blur phenomenon, which 
appears many times in this dataset. These factors induce the 
degradation of image quality, causing poor performance of the 
predictive model. 

Besides illustrable errors, we are still investigating other 
factors that affect classification performance. We suspect it is 
due to i) shadow noises appearing in most of the input images, 
ii) the absence of green and blue channels in the dataset. 
Shadows can reduce or lose all information in remote sensor 
images. That missing information content can render remote 
estimation of biophysical parameters inaccurate and prevents 
image interpretation [26]. Besides that, some papers using just 
RGB images from UAV [27], [28] can get great results, which 
led us to consider the underappreciated role of green and blue 
images in this dataset. However, since the scope of this paper 
can hardly reach such content, we would like this issue to 
future work and will be studied carefully. 

B. Experiment 
After verifying the model with the available datasets, we 

conducted experiments to verify the model under real 
conditions. In this experiment, the UAV was installed with a 
camera capable of capturing spectral images and flying at 
different altitudes. This data will then be calibrated before 
being fed into the deep learning model. And finally, the results 
of the model and analyze the results to make judgments about 
system parameters with data and model. 

1) System Setting 
To collect the data, we used a MapIR Survey3W 

multispectral camera mounted on the DJI Mavic 2 Enterprise, 
as shown below. 

 
(a) 

 
 

(b) 
Fig. 6. System components: (a) Mavic 2 Enterprise and MapIR Survey3W. 
(b) MapIR Survey3W 

MapIR Survey3W is a low-cost multispectral camera. Its 
12MP sensor and sharp non-fisheye lens (with -1% extreme 
low distortion glass lens allow it to capture aerial media 
efficiently. It has an 87° HFOV (19mm) f/2.8 aperture. In this 
experiment, we collect data for 3 wavelength bands, Near-
Infrared 850nm, Red 660nm, and Green 550nm, at different 
heights of 3 meters, 5 meters, and 8 meters. 

2) Data calibration 
As we all know, our sun emits a large spectrum of light 

reflected by objects on the Earth's surface. A camera can be 
used to capture this reflected light in the wavelengths that the 
camera's sensor is sensitive to. We supply sensors based on 
silicon sensitivity in the Visible and Near-Infrared spectrum 
from about 400-1200nm. Using band-pass filters that only 
allow a narrow range of light to reach the sensor, we can 
capture the amount of reflectance of objects to that band of 
light. So, therefore, the image we obtain is always dependent 
on the ambient light conditions. In each different flight, the 
resulting image will have various reflection qualities and to 
solve that problem, we use a calibration board as shown 
below. 

 
Fig. 7. Calibrated Reflectance Panel (CRP) 

To determine the transfer function, first convert the raw 
pixels of the panel image to units of radiance. Then calculate 
the average value of radiance for the pixels located inside the 
panel area of the image. The transfer function of radiance to 
reflectance for the i-th band is: 

 𝐹! =	
𝜌!

𝑎𝑣𝑔(𝐿!)
 (4) 

Where 𝐹! is the reflectance calibration factor for band 𝑖, 
𝜌!  is the average reflectance of the CRP for the i-th band 
(from the calibration data of the panel provided) is the 
average value of the radiance for the pixels inside the panel 
for band 𝑖. After performing the correction, we will proceed 
to calculate the NDVI by: 
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 𝑁𝐷𝑉𝐼 = 	
𝑁𝐼𝑅 − 𝑅𝐸𝐷
𝑁𝐼𝑅 + 𝑅𝐸𝐷	 

(5) 

Here are a few experimental images: 

 
Fig. 8. Images of CRP and data samples at different heights: (a) 3 meter, (b) 
5 meter and (c) 8 meter 

Here are data after calibration: 

 
Fig. 9. Data after calibration at different heights: (a) 3 meter, (b) 5 meter and 
(c) 8 meter 

3) Result 
Experiments were conducted on papaya fields. There are a 

small number of immature papaya plants along with two kinds 
of weeds: common chickweed (Stellaria media) 
and crabgrass (Digitaria) (Fig. 10). We took 110 images at 
three different altitudes with a resolution of 4000 x 3000 
pixels. The supervised dataset was annotated manually by 
science experts. This process took up about 45 minutes/image 
on average. After training the ResUNet model, we obtain an 
F1-score: 0.82, 0.64, 0.61 at altitudes of 3, 5, and 8 meters, 
respectively.    

  
Fig. 10. Chickweed (left) and crabgrass (right) 

The weed that appears much in this data set is chickweed. 
The morphological features of this weed are very similar to 
immature papaya. The difference is the size of weed leaves is 
smaller, and they grow denser than papaya. We find this is a 
challenging dataset with such slight differences and can only 
be completed when the image is sufficiently detailed. Our 
experiments show that only images taken at 3 meters (among 
the three experimental heights, 3, 5, and 8 meters) can detect 
plants (Fig. 11). It is entirely reasonable because a ground 
resolution of 0.2 mm/px (3 meters height and a resolution of 
4000 x 3000 pixels) makes the images highly detailed and 
eligible to distinguish immature papaya plants from 
chickweed. 

 Ground truth Prediction Difference 

3m 

   

5m 

   

8m 

   
Fig. 11. The difference between ground truth and the model’s prediction at 
different heights: 3, 5, and 8 meters (row-wise). 

Though, that does not mean all data at an altitude of 5 or 8 
meters is ineffective in practice. As we mentioned earlier, this 
dataset was challenging, and the crops were out of season at 
the time of data collection. That leads to many areas of dense 
weeds and overlapping between those areas and plants. 
Therefore, the images at 5 or 8 meters are not eligible for the 
segmentation task in this particular circumstance. However, in 
many practical cases, plant and weed classification is often 
implemented early to prevent the spread of weeds (early site-
specific weed management (ESSWM)). In those cases, early-
stage weeds sparsely grow, and overlapping objects appear 
with lower frequency. That makes the segmentation task more 
straightforward and suitable for high-altitude images as they 
can cover large fields, improving classification productivity 
while maintaining accuracy. 

V. CONCLUSIONS 
UAVs used in weed segmentation applications must 

distinguish crops from weeds to make interventions at the 
right time. This paper uses multispectral imagery to focus on 
papaya (our dataset) and sugar beet crops (public dataset). We 
trained six different models and evaluated them by using F1-
score as a metric. Then, an assessment was performed by 
visually comparing ground truth with probability outputs. The 
proposed approach achieved an acceptable performance of 
0.82 and 0.81 F1-score for papaya and sugar beet fields, 
respectively. 

Our experiment has solved the practical problem of using 
UAV images for weed segmentation by deep learning. We 
have proposed a good workflow, and the UAV parameters 
were calculated and adjusted thoughtfully. From that, we 
produced acceptable results even on difficult classification 
conditions. Our UAV system at three different heights 
achieves remarkable results in weed detection and can fix the 
misclassification in boundary areas (section IV-A). More 
specifically, when plants and weeds have similar 
morphological/color features and high weeds density, the 
dataset should be captured at 3 meters height to preserve the 
details. In cases like ESSWM, 5 or 8 meters may be 
appropriate to optimize crop area management while ensuring 
classification quality. 

We will further study the factors affecting the final 
classification results and make a clearer statement about the 
high-altitude UAV systems in different crop growth stages. To 
address this, we required more training data on large-scale, 
multiple weed varieties over longer periods of time to develop 
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a weed detector with more efficient strategies. We are 
planning to build an extensive dataset to support future work 
in the agriculture robotics domain. 
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