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Abstract—APIs are extensively and frequently used in source
code to leverage existing libraries and improve programming
productivity. However, correctly and effectively using APIs, es-
pecially from unfamiliar libraries, is a non-trivial task. Although
various approaches have been proposed for recommending API
method calls in code completion, suggesting actual parameters
for such APIs still needs further investigating. In this paper, we
introduce FLUTE, an efficient and novel approach combining
program analysis and language models for recommending API
parameters. With FLUTE, the source code of programs is first
analyzed to generate syntactically legal and type-valid candidates.
Then, these candidates are ranked using language models. Our
empirical results on two large real-world projects Netbeans and
Eclipse indicate that FLUTE achieves 80% and +90% in Top-
1 and Top-5 Precision, which means the tool outperforms the
state-of-the-art approach.

Index Terms—APIs, code completion, parameter recommen-
dation, language model, program analysis

I. INTRODUCTION

Application program interfaces (APIs) are extensively and
frequently used in software development to leverage exist-
ing libraries and improve programming productivity. Un-
fortunately, due to a large number of API elements, the
insufficiency of APIs’ documents, and the unavailability of
code examples, it is non-trivial to learn and remember APIs
usages [1]. Therefore, programmers often struggle to precisely
use APIs.

Indeed, code auto-completion is a practical solution for
facilitating this challenge and has become an active research
topic. Particularly, code completion is a crucial feature of the
Integrated Development Environments (IDEs). This feature is
expected to speed up the programming process by suggesting
suitable elements in the statements. However, suggestions
of current IDEs are generally based on type compatibility
and visibility. Consequently, such suggestions are limited and
unsuitable in complex cases.

There have been various studies about code completion [2],
[3]. These studies explore different program properties and
recommend different kinds of code elements. For instance, Liu
et al. [3] have proposed a solution using language model and
neural architecture to generate recommendations for identi-
fiers, keywords, punctuation, etc. In another research, Nguyen
et al. [2] combined program analysis and language model to
generate the remaining tokens for incomplete code statements.

Regarding APIs recommendation, several techniques have
been proposed and also obtained promising results [1], [4].
For example, Nguyen et al. [1] built a statistical model to

recommend method calls for Android and Java APIs. Zhou
et al. [4] also proposed a model for code completion of
which performance after queries is boosted by user interaction
information. However, these models mostly focus on method
calls (i.e. the names of APIs). As a result, developers need to
manually fill the corresponding actual parameters.

To accurately use APIs, not only method calls but also
corresponding parameters are required. There is still a lack of
research about auto-completing API parameters. In practice,
60% of the method declarations are parametrized and 50%
of the actual parameters are not correctly suggested by the
existing code completion systems [5]. There are several studies
recommending API parameters [5], [6] by mining similar
usage instances in the existing source code database. How-
ever, since candidates are genereted based on similar existing
instances, the candidates could be invalid and syntactically
incorrect regarding the recommending context.

In this paper, we present our early research on a novel and
effective approach for auto-completing API actual parameters
(aka arguments), FLUTE. For a recommendation point (i.e. the
position in the program where the code completion request
is made), we aim to suggest potential parameters which are
syntactically and semantically correct. Firstly, to guarantee
recommended parameters are syntactically correct regarding
the coding program, program analysis is applied. In particular,
we analyze the control flow graph (CFG) of the program
to identify variables/objects and their data types. After that,
based on type of the formal parameter, all the potential
candidates are generated. Secondly, to address the challenge of
semantic correctness, we train language models to predict the
occurrence likelihood of each candidate in the recommending
context. Importantly, to better capture the patterns of API
usages, our models are trained on both the lexical form and
the abstraction form of the data (i.e. Excode, Sec II-B). We
also take into account the lexical similarity of the candidates
and the formal parameter in the recommendation process.

Our experiments on two projects Eclipse and Netbeans
show that FLUTE is better than the state-of-the-art approach
about 35% in precision and 10% in recall. Specially, FLUTE
obtains about 80% and 95% in precision for Top-1 and Top-10,
respectively. These figures for recall are 66% and 79%.

In summary, our main contributions in this paper are:

• An novel approach for auto-completing API parameters
• Experimental evaluations on large real-world projects



II. APPROACH

Fig. 1 shows the overview of our approach. In general,
FLUTE receives the program source code as input and then
returns a list of candidates which are ranked according to
their probabilities to be actual parameters of the being invoked
methods.

Fig. 1: Approach overview

The recommendation process includes four main steps. First
of all, the program analysis technique is employed to generate
a set of all type-valid and syntactically correct candidates.
After that, to determine the suitability of each candidate in
the recommending context, the occurrence likelihood of each
candidate in the context is estimated by two language models
namely lexical model and Excode model. In particular, the
lexical model is an n-gram model trained on the lexical form
of data, while the Excode model is another n-gram model
trained on the abstraction form of data (i.e. Excode). In
addition, we also calculate the similarity of the candidates
and the formal parameters (lexsim calculation). Finally, these
occurrence probabilities and similarity values are synthesized
to rank the candidates.

A. Potential candidates generation

When a developer requests for suggestion, FLUTE will find
candidates for the parameter. A candidate is valid if it satisfies
two conditions: (1) it is accessible and syntactically correct
with the context of the developing method/program; (2) it is
type-valid with the formal parameter of the being invoked API.

In order to generate all the valid candidates for a recom-
mendation point, first, FLUTE analyzes the source code to
determine the current context including variables and constants
with their corresponding types. Next, FLUTE identifies the
expected type of the candidates by figuring out the data type
of the corresponding formal parameter. Finally, based on the
obtained context and the expected data type, all the potential
candidates are generated.

We use the example shown in Fig. 2 to demonstrate our
process in generating potential candidates. In this figure, at
line 18 in class Example, the developer is invoking method

1 public class Student{
2 private String stud_name;
3 private int stud_id;
4 private float stud_gpa;
5 public static int num_of_students = 0;
6 Student(String _name, int _id, float _gpa){}
7 private boolean classify(){}
8 public int classify(float _gpa){}
9 public String classify(String _stud_name){}

10 public boolean classify(int _stud_id){}
11 }
12

13 public class Example{
14 public static void main(String args[]){
15 String name = "Bean";
16 int id = 100100;
17 float gpa = 4.0f;
18 Student s = new Student(name, id, gpa);
19 boolean status = s.classify(...
20 }
21 }

Fig. 2: Example of a parameter recommendation request. In this
example, at line 19, the auto-complete tool is trigged to suggest the
parameter of the method classify.

classify, and FLUTE is triggered to recommend an actual
parameter for the method.

Firstly, program analysis is employed to analyze the context
of the recommendation request. In this work, context refers to
the code segment from the recommendation point back to the
beginning of the developing method (lines from 14 to 19).
More specifically, at this step, we analyze the CFG to deter-
mine all the available variables/objects and their corresponding
data types. This is the foundation for the next steps.

Secondly, by the information obtained from the previous
step, we determine the expected data type. As shown in Fig. 2,
the method classify is a member of class Student and
it is accessed by a Student object in method main of class
Example. Indeed, there are four versions of classify in
this class, however, only the fourth one (line 10) is fit for the
current invoking context. The reason is that the return type
of s.classify at line 19 is assigned to a variable type
boolean, and it should be a public method due to being
accessed outside of the class Student. In other words, the
expected data type of the recommending parameter is int.

Thirdly, potential candidates are generated based on the
valid variables/objects which are obtained from the program
analysis step. Particularly, all the available variables/objects
which have members (i.e., public fields and the return type
of public methods)/the other public static fields and meth-
ods of the classes with appropriate type will be consid-
ered for candidates generation. For example, in Fig. 2, the
expected type is int, the available variables/objects are
name, id, gpa, and s. Therefore, the generated potential
candidates set includes id which is available in the con-
text, Student.num_of_student which is a public static
field type int of class student, and the other appro-
priate members of JDK, such as Integer.MAX_VALUE,
Integer.MIN_VALUE, etc.



B. Excode transformation

This section presents extended code tokens (Excode) which
we use to represent source code and the candidates generated
in the previous phase for better capturing their general patterns.
Table I shows the detailed rules that we use to generate Excode
for code tokens. These rules are adapted from a previous
work [7] so that they fit the new context. Specially, for code
tokens, we encode their token types and data types in Excode
and exclude specific information such as variable names and
constant values because of the following reasons.

First, the token type of a code token refers to the role of the
token in a program with respect to a programming language.
The typical token roles include variable, field access, method
call, type, keyword, operator, etc. Retaining token types pre-
serves code structure and ensures syntactic correctness of
candidates produced by the semantic language model.

Second, data type is included in Excode to differentiate
tokens which are lexically identical but functionally distinct.
As a result, the type constraints, the accessibilities to fields
and methods of a variable can be validated. For example, two
variables are both named x, however, one is a String and the
other is an Array, these two variables will have accessibilities
to different classes’ members.

Third, variable names and constant values heavily depend
on the particularities of the project, the programmer’s practice,
and the locality of the variables. Consequently, a language
model training in the lexical form of code would encounter
difficulties in identifying the code fragments having the same
meaning but with different variables’ names. For instance,
although statements at line 5 and line 16 in Fig. 2 are lexically
different, they have the same meaning of assigning a numerical
value to an integer variable. Replacing the variable names with
their types makes the representation of two fragments quite
similar, therefore increasing that code pattern’s frequency. On
account of that, the language model not only captures the
source code at a higher abstraction level but also learns code
patterns from one place to suggest others. On the other hand,
the names of data types, methods, and fields are kept since
they are designed with reusability in mind.

C. Occurrence likelihood estimation

In order to provide candidates which are not only syn-
tactically correct but also semantically correct regarding the
recommending context, the occurrence likelihood of each
candidate in the context is estimated by language models. In
particular, we employ two n-gram models, namely the lexical
model and the Excode model. The lexical model is trained on
the lexical form of source code, meanwhile, the Excode model
is trained on the Excode form. After that, these two models
are used to estimate the probability of each candidate in the
recommending context with the corresponding representation
form. The reason for using these two models is that in code
completion/suggestion, patterns of source code in both lexical
level and high abstraction level are important and useful for
code completion/suggestion [8].

D. Lexsim calculation

In practice, the actual parameters and the formal parameters
are often significantly similar or completely dissimilar in terms
of lexical tokens [9]. We also validated this statement in the
two projects, Eclipse and Netbeans. It shows that 68.24%
actual parameters and formal parameters are totally similar
and 22.33% of them are completely different. This means that
among the generated candidates, the more lexical similar to
the formal parameter a candidate is, the higher probability it
is the expected actual parameter. For example in Fig. 2, the
expected parameter is id which is indeed more similar to the
formal parameter (_stud_id, line 10) than the others.

To improve the accuracy of the parameter recommenda-
tion models, we also take into account the lexical similarity
(lexsim) of the actual parameters and the corresponding formal
parameters. Particularly, we leverage the formula proposed by
Liu et al. [9] to calculate the similarity of a candidate (c) and
the corresponding formal parameter (p), as follows:

lexsim(c, p) =
|comterms(c, p)|+ |comterms(c, p)|

|terms(c)|+ |terms(p)|
(1)

In this formula,
• terms(s): The decomposition of s, based on underscores

and capital letters.
• comterms(n1, n2): is the longest subsequence of

terms(n1) and terms(n2).

E. Score calculation

Overall, to evaluate whether a candidate should be the
actual parameter of the recommendation point, we consider
three criteria: (1) its occurrence likelihood evaluated by the
lexical model, (2) its occurrence likelihood evaluated by the
Excode model, (3) the lexsim of the candidate and the formal
parameter. Particularly, the score of a candidate is evaluated
by the multiplication of these three values. Since these values
are from 0.0 (least suitable candidate) to 1.0 (most suitable
candidate), we would like to leverage properties of multipli-
cation such as multiplicative identity and the zero property.
Finally, candidates are ranked by their scores in descending
order.

III. EXPERIMENT

A. Experiment setup

To evaluate our approach, we conducted experiments on
two large projects, Eclipse and Netbeans, which are used in a
similar work [6]. Besides, we adopt 10-fold cross-validation
to train and evaluate our models on each project. In this
work, we employed JDT [10] to conduct program analysis and
NLTK [11] library to build 6-gram MLE language models.

B. Metrics

In order to evaluate FLUTE and compare its performance
with the state-of-the-art approach, we applied precision and



TABLE I: Excode construction rules

Token type Construction rule Example code → excode
Assignment operator o ASSIGN(name(o)) += → ASSIGN(PLUS)
Unary operator o UOP(name(o) ++ → UOP(posIncrement)
N-ary operator o OP(name(o)) [2] + → OP(PLUS)
Separator sp SEPA(sp) ; → SEPA(;)

Bracket To corresponding reserved token [2] { → OPBLK
) → CLOSE PART

Data type T TYPE(T) [2] short → TYPE(short)
Variable v VAR(type(v)) [2] num (int) → VAR(int)

Literal l LIT(type(l)) [2] 0x01 → LIT(num),
true → LIT(boolean)

Method call m M ACCESS(type(caller(m)), name(m), argcount(m)) str.length() → M ACCESS(String,length,0)
Constructor call c C CALL(class(c),class(c)) new String(...) → C CALL(String,String)
Field access f F ACCESS(type(caller(f)),f ) s.area → F ACCESS(Shape,area)

Special literal To corresponding reserved token [2]
0 → LIT(zero),
null → LIT(null),
? → LIT(wildcard)

Control statement cs STSTM(name(cs)) at the beginning of its scope,
ENSTM(name(cs)) at the end of its scope

if {...} → STSTM{IF}. . . ENSTM{IF},
for (...) {...} → STSTM{FOR} . . . ENSTM{FOR},
return → STSTM{RETURN} . . . ENSTM{RETURN}

Type declaration c
CLASS{START,class(c)} at the beginning of its
scope
CLASS{END,class(c)} at the end of its scope

Class Car {...} → CLASS{START,Car} . . . CLASS{END,Car}

Method declaration m
METHOD{rt(m), name(m)} at the beginning of its
scope,
ENDMETHOD at the end of its scope

String toString() {...} → METHOD{String, toString} . . . ENDMETHOD

TABLE II: The performance of FLUTE on all APIs in two projects
Netbeans and Eclipse

Project Top-k Precision Recall

Netbeans

1 78.91% 66.72%
3 89.81% 75.93%
5 92.11% 77.88%

10 94.36% 79.78%

Eclipse

1 79.53% 66.00%
3 91.11% 75.61%
5 93.28% 77.41%

10 95.14% 78.95%

recall measures. These two metrics are also used by Asaduz-
zaman [6].

Precision =
relevant recommendations

made recommendations
(2)

Recall =
relevant recommendations

recommendation points
(3)

In these formulas, made recommendations is the total num-
ber of times our completion technique recommends parame-
ters; relevant recommendations is the total number of times the
target parameter is presented in our Top-k recommendations;
recommendation points is the number of parameters in the test
set.

C. Experimental results

1) Whole-project setting: Table II shows evaluation results
of FLUTE for the Whole-project settings, which include APIs
in all the libraries of Eclipse and Netbeans. As can be seen,
FLUTE achieves about 80% and 95% precision at Top-1 and
Top-10, respectively. In addition, these figures for recall are
66% and 80%, respectively. These results show that for all
the parameters of the APIs in these projects, 80% of them can

TABLE III: The performance of FLUTE and PARC on APIs of SWT
(in Eclipse), AWT, and Swing (in Netbeans)

Project Top-k
Precision Recall

PARC FLUTE PARC FLUTE

Eclipse

1 47.65% 71.63% 46.65% 54.86%
3 65.05% 79.21% 63.68% 60.66%
5 - 80.87% - 61.94%
10 72.26% 85.71% 70.73% 65.64%

Netbeans

1 46.46% 76.48% 44.86% 62.06%
3 66.20% 86.15% 66.75% 69.91%
5 - 87.34% - 70.87%
10 72.06% 88.36% 69.57% 71.70%

be precisely recommended by FLUTE. In other words, FLUTE
can help developers automatically complete 80% of all the
actual parameters that they need to fill during programming.
This could significantly help to improve the development
productivity.

2) Specific libraries setting: To compare the performance
of FLUTE and PARC [6], we conduct experiments on the APIs
of the library SWT in the Eclipse project and the libraries
AWT and Swing in the Netbeans project (Table III). Overall,
FLUTE is better than PARC about 35% in precision and 10%
in recall. Specifically, at Top-1, the number of parameters that
FLUTE correctly recommends at the first position in the ranked
list is 1.6 times higher than that number of PARC (71.63% vs.
47.65%). This means that among 10 requests of parameter
recommendation, there are around 7 requests that the first
candidate in the recommended list exactly hits the expected
target, while this figure for PARC is nearly 5. Moreover, with
FLUTE, if developers investigate about 10 candidates in the
recommended list for each request, they can find the correct



parameters for nearly 90% of requests.

IV. THREATS TO VALIDITY

There are several threats to validity in our work. First,
a threat may come from the dataset that we used for our
experiments. In this work, we used only two projects Eclipse
and Netbeans, therefore, our results may not be generalized
for all kinds of APIs in different software projects. To reduce
this threat, we chose large real-world projects which contain
multiple modules and are widely used in many other studies.
Also, we plan to collect more data for future work. Second,
another threat may come from our implementation. In order to
reduce this threat, we carefully tested and manually reviewed
our implementation.

V. RELATED WORK

Various approaches have been proposed for APIs auto-
completion, however, they mostly focus on completing the
name of the method [1], [4], [12]. Specially, Nguyen et al. [1]
extract method call sequences from mobile apps’ bytecode
and then build a statistical model for recommending method
calls of Android APIs and Java APIs. Besides, Xie et al. [12]
propose a context-aware API recommendation approach which
considers not only the APIs from the third-party libraries
but also project-specific APIs. Moreover, in order to enhance
the effectiveness and personalize the API recommendation,
Zhou et al. [4] leverage the user interaction information with
the recommended results to train a learning-to-rank model
to re-rank the suggested candidates. These approaches have
obtained promising results on auto-completing method names,
nevertheless, they leave the tasks of completing the actual
parameters for developers.

About API parameters recommendation, there are Pre-
cise [5] and PARC [6], [13], which are both developed as
Eclipse plugins. These approaches are based on the key idea
that APIs are often used in similar contexts. They create a
database of API usage contexts from the existing codebase.
Then, for a parameter recommendation query, an ordered list
of candidates is generated by finding similar usage instances
in the database. However, by these approaches, the candidates
are generated from the existing code, thus, they could be
unavailable and even invalid in the coding program. For
FLUTE, the notable difference is that FLUTE applies the
program analysis technique to analyze the current program and
generate lists of valid candidates. After that, to better obtain
their general patterns, candidates are represented by Excode.
Finally, they are scored and ranked by language models.
Therefore, all the recommended candidates from FLUTE are
at least syntactically correct and type conformance with the
expected formal parameters. Furthermore, by this method,
FLUTE can overcome the limitation of the existing approaches
when the recommending contexts are totally different from the
usage patterns in the database.

VI. CONCLUSION

APIs are extensively used in developing programs, various
approaches have been proposed to improve productivity by

auto-completing API invocations. However, most of these
studies concentrate on recommending method names, the
actual parameters are left for developers. This paper introduces
FLUTE, a novel method for auto-completing API actual pa-
rameters. First, FLUTE conducts program analysis to generate
all valid candidates for the parameter requiring positions.
Next, these candidates are scored and ranked by the language
models. Finally, FLUTE outputs a list of candidates which
are ranked according to their suitability with the context of
the program. Our experimental results show that FLUTE can
obtain about 80% in precision and 66% in recall for Top-1.
Furthermore, these numbers for Top-5 candidates are +90%
and nearly 80%, respectively.
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