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Abstract—This paper introduces a system to monitor agri-
culture fields in real time. It includes a sensor network for
in situ data collection and an unmanned aerial vehicle (UAV))
system for remote sensing. The sensor network uses a number
of sensor nodes to measure different parameters of the plants
and environment such as temperature, humidity, and nitrogen
composition. For data communication, the sensor network uses
LoRa, a low-power wide-area network modulation technique,
that allows receiving signals from sensor nodes at a distance
of up to 450 m for a single receiver. The UAV includes visual
and near infrared cameras to collect photos of the field. The data
collection is carried out automatically via a path planning process
that takes into account the overlapping ratio and resolution of the
photos. The data collected is then handled by a cloud server that
allows users to access in real time via a web-based application
and an application on smartphones. A number of experiments
have been conducted with the system being tested in several
agricultural sites to evaluate its practical applicability.

Index Terms—Crop monitoring, agriculture management, un-
manned aerial vehicles, Internet of Things

I. INTRODUCTION

Continuous monitoring of field conditions and vegetation
growth plays a key role in agriculture as it provides timely in-
formation to access essential physiological properties of plants
such as vigor and biomass as well as detect problems related
to their disease and nutrient deficiency. Current monitoring ap-
proaches can be categorized into site-based and remote sensing
methods. The first approach uses in situ sensors connected via
communication networks to monitor field conditions. In [1], a
low power wireless sensor network (WSN) is used to collect
temperature and humidity data of the crop environment and
images of plant growth. Two types of nodes including point-
based sensor nodes and image sensor nodes are used and the
data transmission is carried out via a self-defined protocol
named Collection Tree Protocol. Wireless sensor networks are
also used in [2] to monitor different environmental conditions
such as temperature, humidity, and water level to improve
crop yield and quality. The system uses microcontrollers for
data processing and Zigbee protocol for data communication.
The Internet of Things (IoT) has been used in [3] to allow
site-based sensor data to be monitored anywhere via a web
browser. The system uses Arduino microcontrollers to collect
data from sensors and Ethernet shields to transmit the data

over the Internet. WSN and IoT have also been used in [4]–
[6] as the main data communication technologies in agriculture
monitoring systems. This approach provides capabilities to
continuously monitor a number of parameters of the field
conditions. It however can only provide information at certain
locations of the field. A prediction model is required to extend
the results to other areas. Otherwise, dense sensor networks
should be implemented which would significantly complicate
the system design.

In the second approach, satellite and aerial images are used
in combination with image processing techniques to analyze
plant conditions. Sakamoto et al. [7] use visible and near
infrared images captured from two compact digital cameras to
evaluate vegetation indices including the normalized difference
vegetation index (NDVI), the simple ratio index (SR), and
the green chlorophyll index (CIgreen). Equations for calculat-
ing the indices are obtained based on finding the nonlinear
relationship between the pixel values and the intensity of
incident light. In [8], a data fusion model using images
collected from unmanned aerial vehicles (UAVs) and satellites
is proposed for crop monitoring. The model extracts canopy
spectral information from satellite data and canopy structure
information from UAV data and then uses machine learning to
evaluate properties of soybean plants such as leaf area index
(LAI) and aboveground biomass (AGB). In [9], a system that is
capable of reconstructing a 4D model of a crop is introduced.
That model contains not only the spatial information of plants
such as canopy size, height, and leaf color but also their
temporal information such as the growth rate and leaf color
transition. The system uses data collected from various sensors
as the input to a data association algorithm to generate the
4D model. Remote sensing is also used in [10]–[13] as an
effective non-invasive method to monitor and evaluate different
properties of plants. This method however typically provides
periodic rather than continuous monitoring due to intermittent
data collection provided by satellites and UAVs. In addition, it
faces difficulties in evaluating environmental parameters such
as soil humidity or water level. It is therefore necessary to
combine both the site-based and remote sensing methods to
provide a complete system for agricultural field monitoring.

In this study, we propose a system that is capable of
monitoring not only the spatio-temporal information of the
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Fig. 1: Overview of the proposed system

agricultural field but also environmental parameters in real
time. The system exploits IoT technology to form a network
of sensors for environmental data collection. It also includes
UAVs equipped with visible and near infrared (NIR) cameras
to acquire images of the plants. For data processing, we have
developed a path planning algorithm that calculates viewpoints
for the UAV to follow and take pictures and a system to
process the collected data to extract necessary information
about the environment and plant conditions. We also develop
an application for smartphones and a web-based interface to
make the data accessible in real time for timely decision
making. A number of experiments and evaluations have been
conducted and results confirm the effectiveness and validity of
our approach.

II. PROPOSED SYSTEM

Figure 1 shows an overview of our proposed system which
includes an IoT-based sensor network, UAVs, a cloud com-
puting system, a data processing system, and a user interface.
Details of the main components are described as follows.

A. IoT-based sensor network

The sensor network includes a number of modules installed
in the field to measure environmental parameters. We choose
the following sensor modules for the typical needs of agricul-
tural monitoring:

• Meteorological sensor module for weather moni-
toring: This module includes the sensors to monitor
the weather of the farming area such as temperature,
humidity, wind direction, wind speed, and rainfall.
These are the factors that greatly affect the plant
growth in both short-term and long-term.

• Light sensor module: This module measures light
intensity in three bands including visible, near-
infrared and ultraviolet. It allows the system to
monitor the lighting condition to evaluate if the plant
photosynthesis is suitable for their growth.

• Air quality module: This module measures changes
in nitrogen composition such as NH3 and NO2 which
is important to determine the time for using nitrogen

(a) (b)

Fig. 2: Cameras and drones used. (a) Camera Sentera Quad
Sensor installed on the drone DJI M600 Pro; (b) Camera
MapIR Survey 3 installed on Phantom 4 Pro

fertilization in the farming area. The module also
monitors the level of O2 and CO2 which is important
for the growth of some plant species such as button
mushroom and reishi mushroom.

Data from the sensors is transmitted to the base station
before being forwarded to the Internet. We use the network
modulation technique LoRa for energy efficiency and long
range communication. The messaging protocol used is MQTT,
a standard protocol for IoT to connect remote sensors with
minimal network bandwidth. The communication system is
developed with an open design so that parameters such as the
data frame, transmission time, and quality of service (QoS)
can be modified. The sensor network is thus scalable to the
number of sensor nodes and network coverage.

B. UAV system for data collection

To collect remote sensing data of the field, we use cameras
installed on UAVs with the following configurations:

(1) Camera Micasense installed on the UAV using a
passive anti-vibration mechanism which is a soft
rubber of 3 mm thick.

(2) Camera Sentera Quad Sensor installed on the drone
DJI M600 Pro with an active 3D gimbal stabilizer.

(3) Camera MapIR Survey 3 installed on the drone
Phantom 4 using a 3D printed plastic and soft rubber
for anti-vibration.

In our system, configuration 1 is designed for high quality
photos in which the high sensitivity camera is directly inte-
grated into the flight controller. Configuration 2 is suitable for
operating in unstable weather conditions since it has the high
safety factor and good anti-vibration capability as shown in
Fig.2a. Configuration 3 is a combination of low-cost cameras
and drones as shown in Fig.2b. This configuration, if being
properly implemented, can provide images at almost the same
quality as the two configurations above at a lower cost.

C. Data processing

Data processing module is the main component of our
system. It carries out the radiometric calibration for cameras,
plans flight paths for UAV and handle the data collected from
sensors.



1) Radiometric Calibration: To calculate the normalized
difference vegetation index (NDVI) and the normalized differ-
ence red edge (NDRE) for plant monitoring, it is necessary
to determine the reflection ratio of the NIR and RED bands.
However, lighting conditions often change during the survey-
ing process leading to differences in the power spectral density
at these two bands and hence the reflected intensity. Therefore,
it is necessary to calculate the power ratio of NIR and RED
before flying.

In this study, we propose to use the calibration target method
in which we place a reflector with 50-51% reflectivity, as
shown in Fig.3, next to the UAV takeoff and landing point to
take pictures between the two surveys. Based on the marker,
the calibration algorithm can detect the reflector and hence all
the pixels I within that reflector. According to [14], the value
of pixel I for a certain band is given by:

I = P ·R · C, (1)

where I is the pixel value ranging from 0 to 255, P is the
power spectrum, R is the reflectance coefficient associated to
the reflector used as shown in Table I, and C is the optic
property of the camera.

Since the camera configuration is fixed, the reflection ratio
is given by:

Inir
Ired

=
Pnir ·Rnir · C
Pred ·Rred · C

=
Pnir ·Rnir

Pred ·Rred
(2)

The overall ratio then can be computed by including all the
detected pixels of the calibration target:

δ =
Pnir

Pred
=

∑
Inir ·Rnir∑
Ired ·Rred

(3)

Finally, the NDVI can be estimated as:

NDV I =
Inir − δ · Ired
Inir + δ · Ired

(4)

Similarly, the NDRE can be computed as:

NDRE =
Inir − δNDRE · Ire
Inir + δNDRE · Ire

, (5)

where

δNDRE =
Pnir

Pre
=

∑
Inir ·Rnir∑
Ire ·Rre

(6)

TABLE I: Reflectance coefficients of the calibration target
RP04 Micasense

RED RE (Red edge) NIR
Wavelength 668 nm 717 nm 840 nm
Bandwidth 20 nm 10 nm 40 nm
Reflectance coefficient 52.0 % 52.0 % 51.8 %

Fig. 3: The Micasense’s reflector used for radiometric calibra-
tion

2) Path planning: To capture photos of the field, it is
important to plan a path for the UAV to follow that includes the
viewpoints at which the camera takes photos. The viewpoints
should be selected so that the photos taken cover the whole
area of interest. The calculation of viewpoints in this work is
similar to our previous work [15]. Specifically, the survey area
is split into a set of geometric primitives p as shown in Fig.4.
The size of p is equivalent to the effective field of view of
the camera. Let sf be the required resolution or the smallest
feature being distinguished in the captured photo and rc be
the resolution of the camera. As illustrated in Fig.5, the field
of view of the camera, afov , is computed as:

afov =
1

2
rcsf . (7)

Since the captured photos need to overlap by a percentage
op for the sticking algorithm to merge them, the effective field
of view of the camera p is computed as:

p = (1− op)afov. (8)

To obtain p from each captured photo, the working distance
from the camera to the surveying surface is computed as:

dk =
afovf

ss
, (9)

where f is the focal length and ss is the sensor size of the
camera. The viewpoints then can be selected as the centers
of geometric primitives p projected to the surface having the
distance dk to the surveying surface as illustrated in Fig.4.
Those viewpoints can be chosen as waypoints for the flight
path of the UAV.

D. Cloud server and user applications

To handle the collected data and provide users with real-
time access, we use a cloud server as the center for monitoring
and control. This server manages data from measuring stations
and sensor nodes as well as classifying and storing the
collected data. It also handles the access requests relating to
the environmental data and broadcasts messages relating to
actions required for the farm.
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Fig. 5: Camera setup for data collection

Our system provides two means of access for users includ-
ing a web-based graphic user interface and an application on
smartphones. We use Node-Red, a flow-based development
tool, to develop the web-based application. It reads MQTT
packets, stores them in the MongoDB database, and generates
daily and weekly reports as shown in Fig.6. The mobile
application is developed using the Qt platform and provides
similar functions as with the web-based application.

III. EXPERIMENTS

We have tested our system in several agricultural sites to
evaluate its performance with details as follows.

A. Experimental setup

In our system, we use the weather station of DFRobot that
includes sensors for temperature, humidity, wind speed, wind
direction, and rainfall. The sunlight sensor used is Grove SKU
101020089 that can detect light in the ultraviolet (UV), visible,
and NIR bands. To measure the air composition, we use the

Fig. 6: The web-based graphic user interface

(a) Sensor box (b) Weather station

Fig. 7: Sensor nodes installed at the field

MiCS-6814 module of Amphenol SGX Sensortech. For the
LoRa network, we use Dragino LoRa shields for sensor nodes
and Dragino Gateway LG01 modules for stations. Figure 7
shows the sensor box and the weather station installed at the
field. For remote sensing, the drones and cameras used are
described in Section II-B.

Our system has been set up in several crops in northern Viet-
nam. The crop seasons and plants being monitored include:
• the spring-summer crop of maize in Hai Duong
• the winter-spring crop of tomato in Dong Anh
• the winter-spring crop of carrots in Hai Duong
We also tested our system at a mountainous area dedicated

to organic farming in Ba Vi, Hanoi.

B. Results

1) IoT-based sensor module: We have installed the sen-
sor network in the aforementioned crops and measured the
communication ability of the sensor nodes. According to the
manufacturer’s specifications, the LoRa device we use has the
spreading factor of 7, bandwidth of 125 kHz, and encoding rate
of 4/5. In the experiment, we configured the device to operate
at the frequency of 923 MHz and the transmitting power of 20
dBm. We used three antennas with the gains of 3 dBi, 10 dBi,
and 18 dBi. The results were measured by the RF Explorer
915M V2.0 device. Figure 10 shows the receiving power with
respect to the distance. It can be seen that the receiver we use,
the LoRa Gateway OLG-01 with the sensitivity of -120 dBm,
can communicate with the sensor nodes at the distance of 200
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Fig. 8: Temperature of the environment and inside the device
box
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Fig. 9: Humidity of the environment and inside the device box

m for the 3 dBi antenna, 400 m for the 10 dBi antenna, and
450 m for the 18 dBi antenna. Therefore, a suitable antenna
can be used depending on the size of the crop.

In another experiment, we measured the temperature and
humidity of the environment and inside the device box as
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Fig. 10: The receiving power with respect to the distance of
the LoRa network for three antennas

Fig. 11: The map showing the actual viewpoints and their
variance (circle lines) in experiments

Fig. 12: The planned path for the UAV to collect data

shown in Fig.8 and Fig.9. The temperature inside the device
box is higher than the outside environment which is reasonable
due to the heat emitted from operating electronic components.
It also explains the stable value of the humidity inside the box
compared to the outdoor environment. More importantly, the
relatively low temperature and humidity of the device imply
its proper operation.

2) UAV-based data collection results: We have conducted
experiments to evaluate the use of UAV for remote sensing
data collection. Given the area to be surveyed and the param-
eters of the camera, the flight altitude and viewpoints can be
computed as in Section II-C2. Those values are then used as
input to the Pix4Dcapture software to create a flight path for
the UAV. In our experiments, we used the Phantom 4 Pro drone
with an anti-vibration system for the camera to survey an area
of 5.8 ha. Figure 12 shows the planned path and Fig.11 shows
the actual viewpoints (the points at which the camera takes
photos) together with their variance during the flight. It can be
seen that planned and actual viewpoints match relatively well



(a) Orthogonal view (b) Digital surface model

Fig. 13: The reconstructed models of the surveying area

(a) NVDI (b) NVRE

Fig. 14: The estimated vegetation indices

despite small errors caused by GPS and changes in the surface
height. It is also noticeable that some points (highlighted in
red) do not meet the requirement on the overlapping ratio
due to their large errors. Despite that, the photos taken were
successfully stuck together to provide an overall orthogonal
view of the surveying area as shown in Fig.13a and the digital
surface model of the area as shown in Fig.13b.

Figure 14 shows the estimated NVDI and NVRE for a farm.
It can be seen that changes in the value of NVRE is greater
than NVDI since NVRE is more sensitive to the chlorophyll,
leaf area variation, and influence of substrate. As the result,
NVRE is better to use during the mid- and late-season to get
more information about the growth of plants.

IV. CONCLUSION

We have proposed in this work a system for real-time
monitoring of agricultural sites using IoT-based sensors and
UAVs. With the sensor network, we have designed the sensor
modules together with a LoRa network using the Internet
of Things technology for data communication. For UAVs,
we have introduced the calculation of viewpoints for path
planning and a method to calibrate the reflection levels for
NDVI and NDRE indices. In addition, a web-based application
and an application for smartphones have been developed for
real-time access of monitoring data. Our system has been
tested in several agricultural sites and the results confirm
its effectiveness and validity for monitoring and management
tasks.

ACKNOWLEDGMENT

The author Cong Hoang Quach is supported by the Do-
mestic Ph.D. Scholarship Programme of Vingroup Innovation
Foundation (VINIF), Vingroup Big Data Institute (VINBIG-
DATA), code VinIF 2020. TS.23.

REFERENCES

[1] Z. Liqiang, Y. Shouyi, L. Leibo, Z. Zhen, and W. Shaojun., “A
crop monitoring system based on wireless sensor network,” Procedia
Environmental Sciences, vol. 11, pp. 558–565, 2011.

[2] B. B. Bhanu, K. R. Rao, J. Ramesh, and M. A. Hussain, “Agriculture
field monitoring and analysis using wireless sensor networks for im-
proving crop production,” in 2014 Eleventh International Conference
on Wireless and Optical Communications Networks (WOCN), 2014, pp.
1–7.

[3] I. Mohanraj, K. Ashokumar, and J. Naren, “Field monitoring and au-
tomation using iot in agriculture domain,” Procedia Computer Science,
vol. 93, pp. 931–939, 2016.

[4] L. Dan, C. Xin, H. Chongwei, and J. Liangliang, “Intelligent agriculture
greenhouse environment monitoring system based on iot technology,” in
2015 International Conference on Intelligent Transportation, Big Data
and Smart City, 2015, pp. 487–490.

[5] F. Viani, M. Bertolli, M. Salucci, and A. Polo, “Low-cost wireless
monitoring and decision support for water saving in agriculture,” IEEE
Sensors Journal, vol. 17, no. 13, pp. 4299–4309, 2017.

[6] O. Chieochan, A. Saokaew, and E. Boonchieng, “Iot for smart farm: A
case study of the lingzhi mushroom farm at maejo university,” in 2017
14th International Joint Conference on Computer Science and Software
Engineering (JCSSE), 2017, pp. 1–6.

[7] T. Sakamoto, A. A. Gitelson, A. L. Nguy-Robertson, T. J. Arkebauer,
B. D. Wardlow, A. E. Suyker, S. B. Verma, and M. Shibayama, “An
alternative method using digital cameras for continuous monitoring of
crop status,” Agricultural and Forest Meteorology, vol. 154-155, pp.
113–126, 2012.

[8] M. Maimaitijiang, V. Sagan, P. Sidike, A. M. Daloye, H. Erkbol, and
F. B. Fritschi, “Crop monitoring using satellite/UAV data fusion and
machine learning,” Remote Sensing, vol. 12, no. 9, 2020.

[9] J. Dong, J. G. Burnham, B. Boots, G. Rains, and F. Dellaert, “4d
crop monitoring: Spatio-temporal reconstruction for agriculture,” in 2017
IEEE International Conference on Robotics and Automation (ICRA),
2017, pp. 3878–3885.

[10] P. Defourny, S. Bontemps, N. Bellemans, C. Cara, G. Dedieu, E. Guz-
zonato, O. Hagolle, J. Inglada, L. Nicola, T. Rabaute, M. Savinaud,
C. Udroiu, S. Valero, A. Begues, J.-F. Dejoux, A. El Harti, J. Ez-
zahar, N. Kussul, K. Labbassi, V. Lebourgeois, Z. Miao, T. Newby,
A. Nyamugama, N. Salh, A. Shelestov, V. Simonneaux, P. S. Traore,
S. S. Traore, and B. Koetz, “Near real-time agriculture monitoring at
national scale at parcel resolution: Performance assessment of the sen2-
agri automated system in various cropping systems around the world,”
Remote Sensing of Environment, vol. 221, pp. 551–568, 2019.

[11] N. Sanchez, A. Gonzalez-Zamora, J. Martinez-Fernandez, M. Piles, and
M. Pablos, “Integrated remote sensing approach to global agricultural
drought monitoring,” Agricultural and Forest Meteorology, vol. 259, pp.
141–153, 2018.

[12] X. Zhang, F. Zhang, Y. Qi, L. Deng, X. Wang, and S. Yang, “New
research methods for vegetation information extraction based on visible
light remote sensing images from an unmanned aerial vehicle (uav),” In-
ternational Journal of Applied Earth Observation and Geoinformation,
vol. 78, pp. 215–226, 2019.

[13] A. Kern, Z. Barcza, H. Marjanovic, T. Arendas, N. Fodor, P. Bonis,
P. Bognar, and J. Lichtenberger, “Statistical modelling of crop yield in
central europe using climate data and remote sensing vegetation indices,”
Agricultural and Forest Meteorology, vol. 260-261, pp. 300–320, 2018.

[14] D. Olsen, C. Dou, X. Zhang, L. Hu, H. Kim, and E. Hildum, “Radiomet-
ric calibration for AgCam,” Remote Sensing, vol. 2, no. 2, pp. 464–477,
2010.

[15] M. D. Phung, C. H. Quach, T. H. Dinh, and Q. Ha, “Enhanced discrete
particle swarm optimization path planning for UAV vision-based surface
inspection,” Automation in Construction, vol. 81, pp. 25–33, 2017.


