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Abstract—In estimation, the misspecified Cramer–Rao bound
(MCRB), which is an extension of the well-known Cramer–Rao
bound (CRB) when the underlying system model is misspecified,
has recently attracted much attention. In this paper, we introduce
a new interpretation of the MCRB, called the generalized MCRB
(GMCRB), via the Moore–Penrose inverse operator. This bound
is useful for singular problems and particularly blind channel
estimation problems in which the Hessian matrix is noninvertible.
Two closed-form expressions of the GMCRB are derived for
unbiased blind estimators when the channel order is misspecified.
The first bound deals with deterministic models where both the
channel and unknown symbols are deterministic. The second
one is devoted to stochastic models where we assume that
transmitted symbols are unknown random variables i.i.d. drawn
from a Gaussian distribution. Two case studies of channel order
misspecification are investigated to demonstrate the effectiveness
of the proposed GMCRBs over the classical CRBs. When the
channel order is known or accurately estimated, both generalized
bounds reduce to the classical bounds. Besides, the stochastic
GMCRB is lower than the deterministic one, especially at high
SNR.

Index Terms—Peformance lower bounds, constrained Cramer-
Rao bound, misspecification, MIMO, channel order.

I. INTRODUCTION

Channel estimation is one of the most fundamental and
essential problems in wireless communications. Methods for
channel estimation can be categorized into two main classes:
data-aided and blind estimation [1]. Data-aided estimators
exploit pilot symbols at the receiver to estimate the channel.
Blind estimators, on the other hand, can identify the channel
parameters directly from output observations without the need
for pilots. Accordingly, blind channel estimation is a promising
candidate to solve the pilot overhead and increase the spectral
efficiency of communication systems. However, their accuracy
is often less than that of data-aided estimators; in that case one
might rely on semi-blind estimation, such as [1].

For many estimators, accurate information about the channel
order is of great importance, and it strongly impacts their esti-
mation performance. It is well-known that most blind channel

Le Trung Thanh is with PRISME Laboratory, University of Orléans, France,
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estimation techniques are sensitive to the channel order estima-
tion errors [2]–[4]. Underestimation (underspecification) of the
channel order degrades their performance significantly. When
the channel order is overestimated (overspecified), some blind
channel estimation techniques are robust to overspecification,
such as [5]–[7]. However, their estimation accuracy is not as
good as that of the well-known blind techniques (e.g., the
subspace-based algorithm in [8] and the least-square algorithm
in [9]) when the channel order is accurately estimated.

There are various methods for channel order estimation,
for examples [10]–[18] to name just a few. Among them,
the two most well-known algorithms are based on the
information-theoretic criteria, they are: minimum description
length (MDL) [10] and Akaike information criteria (AIC) [11].
These algorithms, however, only work well under certain
conditions and do not always result in the true order in
practice. For example, MDL inclines towards overestimation
of the channel order at high SNR, while AIC aims to estimate
order of the most significant part of the channel called effective
channel order. By contrast, the method of Liavas et al. in [12]
tend to underestimate the channel order [14]. This paper
focuses on evaluating performance lower bounds for blind
channel estimators in the presence of channel order estimation
error, that is under channel order misspecification.

It is well known that the Cramer-Rao bound (CRB) provides
a lower bound on the variance of any unbiased estimator and is
often used as a benchmark for parameter estimators [19]. Vari-
ous analytical expressions of CRB have been derived for chan-
nel estimation in general and blind estimation in particular,
e.g. [20]–[26]. These bounds, however, are appropriate only for
perfect specification models, i.e., the true channel order is al-
ready known or accurately estimated. This limitation motivates
us to look for new performance bounds in order to deal with
imperfect knowledge of channel order. Under channel order
misspecification, misspecified Cramer–Rao bound (MCRB),
considered as a generalization of the classical CRB [27]–[29],
has been introduced as an attractive alternative, due to the
fact that the true model which generates the data is generally
different from the assumed model used to estimate parameters
of interest. Under certain conditions, the MCRB results in
the Huber sandwich covariance which provides the lowest
bound on the variance of unbiased estimators sharing the same
mean with the maximum likelihood estimator (MLE) when the
underlying model is misspecified [30].

In the literature, several interpretations of the MCRB
have been investigated for unconstrained, constrained, and
Bayesian estimation under model misspecification [31]–[34].
The MCRB has already been applied in several signal pro-
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cessing and communications applications such as direction of
arrival estimation [28], time of arrival estimation [35], and
harmonic approximations of inharmonic signals [36].

In the MCRB context, it is always assumed that the Hessian
matrix of the log-likelihood function, often referred to as the
misspecified Fisher information matrix (MFIM), is nonsingu-
lar [29]. Otherwise, some parameters to be estimated can be
expressed in terms of others which means they cannot be com-
pletely identified from the observed data [37]. Intuitively, the
singularity of the Hessian matrix indicates that the estimation
problem is irregular or singular and the variance of estimators
could be infinite. It often happens in estimation problems
that involve a large number of parameters such as (deep)
neural networks [38]–[40], complex biological/biomedical sys-
tems [41]–[43] as well as blind channel estimation [44]–[46].
In such problems, the usual MCRB may be nonexistent and
its properties cannot be applied directly.

In the literature, there exist several approaches to rectifying
and regularizing estimation problems with a singular Hessian
matrix. The first approach is to introduce prior information for
the estimation model to deal with the existence and uniqueness
of the solution [47]. In this way, the estimation becomes
Bayesian inference, and the performance lower bounds turn
out to be the Bayesian ones. However, incorporating the prior
information may not be sufficient to ensure estimation success
from real data [41], [48]. Moreover, such prior information is
not always available in practice. The second approach is to
perform biased estimation [49], [50]. It is shown that intro-
ducing an appropriate bias can handle the irregular estimation
problems with singular Fisher information matrices [51]. The
resulting bounds, however, may not be useful in applications
that prefer unbiased estimates. The third approach is to impose
additional constraints on the unknown parameters. The para-
metric constraints lead to a transformed estimation problem
in which unbiased estimators with finite variance may exist.
In general, the value and computational complexity of the
constrained bounds (e.g., the constrained CRB) depend on the
choice of constraints. However, the constrained bound is often
under restrictive unbiasedness conditions in some situations;
thus, it may not be a lower bound for unbiased constrained
estimators [52], [53]. Another good alternative is to use the
pseudo-inverse matrix [54], [55]. Mathematically, the pseudo-
inverse can be derived from the nonzero eigenvalues and
corresponding eigenvectors of the Hessian matrix, so the result
is well-conditioned in most cases. It is also shown in [55]
that the pseudo-inverse-based approach actually belongs to the
class of constrained problems. In this study, we focus on the
third approach.

Constrained MCRB (CMCRB) for unbiased estimators has
recently been introduced by Fortunati et al. in [32], [33]. It
is indicated that the CMCRB is consistent with the classical
constrained CRB in [56], [57] and its existence is derived
from the identifiability of the constrained pseudo-true param-
eter [32]. However, the expression of CMCRB may not be
readily computable in some applications when the constraints
are too complicated. The underlying motivation of this paper
is to fill in this gap by providing a generalized interpretation
of the MCRB so that we are able to determine the performance

limit of estimators derived from singular problems in a simple
but rigorous way.

The paper has three main contributions as follows. Based
on the preliminary result in [58], we first introduce the new
generalized interpretation of MCRB (referred to as GMCRB)
via the Moore–Penrose inverse operator. Compared to the
state-of-the-art bounds, the proposed GMCRB offers several
appealing advantages. Among them is that GMCRB is mathe-
matically much simpler and more accessible than CMCRB.
In singular problems where prior constraints imposed on
parameters of interest are too complicated and numerous, the
computation of CMCRB may be intractable. By contrast, the
proposed GMCRB is always existent, and its interpretation is
not only intuitive and formally sound but also easy to compute.
Moreover, GMCRB provides the tightest bound for CMCRB
among all choices of parametric constraints to regularize the
singular problem. Also, the generalized form of GMCRB holds
for both singular and regular estimation problems. Specifically,
GMCRB is identical to the usual MCRB for regular problems
but also consistent with the classical CRB under well-specified
models. In addition to a performance lower bound, we also
establish a sufficient condition for parametric constraints to
achieve the proposed bound. This result supports future studies
of making elaborate designs of parametric constraints and de-
riving efficient constrained estimators for singular estimation
problems.

Second, in the context of blind channel estimation, we
derive two closed-form expressions of the GMCRB for an-
alyzing the theoretical performance limit of blind estimators
when the channel order is misspecified. One is devoted to
deterministic models where unknown transmitted symbols are
assumed to be deterministic. The other is for stochastic models
where transmitted symbols are unknown random variables
i.i.d. drawn from a stochastic Gaussian process. The variance
of any misspecified-unbiased estimator is always higher than
the stochastic MCRB. The two proposed MCRBs, for the first
time, provide performance lower bounds for blind channel
estimation techniques under model misspecification.

And third, two case studies of channel order misspecifi-
cation are investigated in detail. We show that the channel
order underspecification leads to more problems than the
overspecification. While the overspecification may give rise
to the inefficiency of channel order estimation only, the un-
derspecification introduces bias and hence several misleading
results, e.g. gain in efficiency from excluding some channel
parameters. The case studies suggest that we should always
prefer overspecification to underspecification in practice.

The rest of the paper is structured as follows. In Section II,
the usual MCRB under model misspecification is briefly
reviewed. In Section III, our new generalized interpretation
of the MCRB is established, via the Moore-Penrose inverse
operator. In Sections IV and V, the problem of blind MIMO
channel estimation is formulated and then the two closed-
formed expressions of the MCRB are derived, for unbiased
blind estimators when the channel order is misspecified. In
Section VI, two case studies of channel order misspecification
are investigated. Conclusions are given in Section VII.
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II. MISSPECIFIED CRAMER-RAO BOUND

We briefly reviews the MCRB, which is an extension of
the CRB for dealing with misspecified models [29]. For
further information of its derivation, properties and appli-
cations, we refer the reader to [27]–[29] and references
therein. Assume that the sample data follow the true distri-
bution f(y). However, users adopt a different distribution
g(y∣θ),θ = [θ1, θ2, . . . , θn]⊺ ∈ Θ, to characterize statistics of
y instead, where g(y∣θ) ≠ f(y), for all θ. For the users, the
problem of interest is to estimate θ.1

A. Pseudo-true Parameter θpt

In this context, Kullback-Leibler (KL) divergence is used to
determine the “best”-performance unbiased estimators might
attain in the presence of misspecification models [29].

The KL divergence measures amount of information loss
when we use the assumed g(y∣θ) to approximate the true
f(y), which is defined by

KL (f(y)∣∣g(y∣θ)) ∆= Ef{ log(
f(y)
g(y∣θ)

)}. (1)

The unique parameter minimizing KL(f(y)∣∣g(y∣θ)) is
the so-called pseudo-true parameter, θpt. In practice,
KL(f(y)∣∣g(y∣θ)) cannot be obtained since the true density
fy is generally unknown. So we can estimate the maximum
likelihood (MLE) for the density instead. Particularly, mini-
mizing (1) is equivalent to maximizing the expectation of the
misspecified log-likelihood function ℓ(y∣θ) ∆= log g(y∣θ), i.e.,

θpt
∆= argmin

θ∈Θ
KL(f(y)∣∣g(y∣θ)) = argmax

θ∈Θ
Ef{ℓ(y∣θ)}. (2)

Accordingly, it is shown in [27], [30] that the MLE θ̂MLE
converges in probability to θpt. Moreover, its asymptotic
covariance matrix is equal to the MCRB which will be later
defined in next subsection.

In the following, we always assume the existence and
the uniqueness of the pseudo-true parameter and provide the
closed-form expression of θpt if possible.

B. Unconstrained MCRB

Let θ̂ be an estimator derived under the misspecified model
g(y∣θ) from the output samples. We call θ̂ misspecified (MS)-
unbiased estimator if and only if

Ef{θ̂(y)} = ∫ θ̂(y)f(y)dy = θpt. (3)

We define the following matrices Jθ and Aθ:2

Jθ = Ef{
∂ℓ

∂θ∗
( ∂ℓ

∂θ∗
)
H

} and Aθ = Ef{
∂2ℓ

∂θ∂θH
}, (4)

1When dealing with a mixture of both real parameters (θr ∈ Rnr ) and
complex parameters (θc ∈ Cnc ,θc ∉ Rnc), we consider the augmented
representation: θ = [θ⊺c ,θ

H
c ,θ⊺r ]

⊺

∈ C2nc ×Rnr .

2 ∂
∂θ
= [

∂
∂θ1

, ∂
∂θ2

, . . . , ∂
∂θn
]
⊺, ∂

∂θ∗
= [

∂
∂θ∗

1
, ∂
∂θ∗

2
, . . . , ∂

∂θ∗n
]
⊺, ∂

∂θ⊺
=

[
∂

∂θ1
, ∂
∂θ2

, . . . , ∂
∂θn
], and ∂

∂θH = [
∂

∂θ∗
1
, ∂
∂θ∗

2
, . . . , ∂

∂θ∗n
].

where ℓ
∆= ℓ(y∣θ). When Aθ is nonsingular at θ = θpt, the

error covariance matrix of any MS-unbiased estimator θ̂(y)
is bounded by MCRB [29]

C(θ̂(y),θpt) ⪰MCRB(θpt)
∆= A−1θpt

JθptA
−1
θpt

, (5)

where

C(θ̂(y),θpt) = Ef{(θ̂(y) − θpt)(θ̂(y) − θpt)
H}, (6)

and “ ⪰ ” denotes the positive semidefinite order.

C. Constrained MCRB

When additional constraints are imposed on θ, the con-
strained version of MCRB has recently been introduced by
Fortunati et al. in [32], [33], hereafter referred to as CMCRB.

Suppose that θ is required to satisfy the following con-
straint: u(θ) = 0.3 If the Jacobian matrix ∇u(θ) = ∂u(θ)

∂θ⊺

is full row-rank for any θ ∈ Θ and there exists a matrix U
spanning its null space,

∇u(θ)U = 0 and UHU = I, (7)

then the following holds for the CMRCB:

C(θ̂(y),θpt) ⪰ U(UHAθptU)
−1(UHJθptU)×

× (UHAθptU)
−1
UH ∆= CMCRBu(θpt),

(8)

under the assumption that UHAθptU is nonsingular.

III. GENERALIZED MISSPECIFIED CRAMER-RAO BOUND

In this section, we introduce the new generalized interpre-
tation of the MCRB, hereafter referred to as GMCRB. Our
main result is stated in the following lemma.

Lemma 1. Let θ̂(y) be an MS-unbiased estimator derived
under model misspecification from observed data. The total
variance of θ̂(y) is lower bounded according to

C(θ̂(y),θpt) ⪰A#
θpt

JθptA
#
θpt

∆= GMCRB(θpt), (9)

where (⋅)# denotes the Moore–Penrose inverse operator and
the two matrices Aθpt and Jθpt are defined as in (4).

Proof Sketch. The proof consists of two cases: (a) full rank
Aθpt

(i.e., regular estimation) and (b) singular Aθpt
(i.e.,

singular estimation). For case (a), we indicate that GMCRB
boils down to the usual MCRB, hence (9) is proved. For case
(b), we prove that the proposed GMCRB is the tightest bound
for CMCRB under any constraints imposed to regularizing
the estimation. It results in C(θ̂(y),θpt) ⪰ CMCRBu(θpt) ⪰
GMCRB(θpt) ∀u(θ).

In what follows, we provide the detailed proof of Lemma 1
as well as present the connection to the existing MCRBs.

3In some applications, parameters of interest are constrained to lie in a
proper subset of the original parameter space. Some examples are positivity,
atomicity and bandwidth constraints in phase retrieval [59], array geometry
constraints in direction-of-arrival estimation [60], and prior channel state
information in wireless channel estimation [61]. The function u(θ) aims to
represent imposed constraints on unknown parameters in such applications.
Moreover, u(θ) may contain additional constraints to regularizing singular
estimation problems.
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First, when Aθpt is nonsingular, the proposed GMCRB
reduces to the unconstrained MCRB in (5), i.e.,

GMCRB(θpt) =A−1θpt
JθptA

−1
θpt
=MCRB(θpt). (10)

When Aθpt is singular, there is no MS-unbiased estimator
θ̂(y) with finite variance. In this case, additional constraints
should be imposed on θ to insure its uniqueness. For a given
constraint u(θ) with a full rank ∇u(θ), we will prove

CMCRBu(θpt) ⪰ GMCRB(θpt). (11)

Step I: The link between GMCRB and CMCRB

Performing eigenvalue decomposition (EVD) of Aθpt ∈
Cn×n of rank r results in

Aθpt = [Ur Vr] [
Σr

0
] [U

H
r

V H
r
] , (12)

where V H
r Ur = 0. Accordingly, we have

A#
θpt
= UrΣ

−1
r UH

r = Ur(UH
r AθptUr)

−1
UH

r . (13)

The expression (9) becomes

A#
θpt

JθptA
#
θpt
= Ur(UH

r AθptUr)
−1×

× (UH
r JθptUr)(UH

r AθptUr)
−1
UH

r ,
(14)

which is identical to the CMCRB in (8). Accordingly, the
proposed GMCRB holds for the CMCRB under the constraint
function u(θ) satisfying ∇u(θ) = V H

r .

Stage II: GMCRB is the minimum CMCRB

The result follows immediately the next three propositions.

Proposition 1. For any constraint u(θ) such that ∇u(θ) is
full row-rank, ∇u(θ)U = 0, UHU = Ir′ , and UHAθptU is
nonsingular, we have

min
u(θ)

rank (∇u(θ)) = n − r. (15)

Proof. We have rank(∇u(θ)) = n − r′,0 < r′ < n, and
rank(U) = r′ by definition (7).

Under the assumption that UHAθptU is nonsingular, we
have rank(UHAθptU) = r′ because U is full column-rank.

In parallel, we know that

rank(MN) ≤min ( rank(M), rank(N)) ∀M ,N ,

hence

r′ = rank (UHAθptU) ≤min ( rank(Aθpt), rank(U))
=min(r, r′). (16)

Accordingly, we obtain r′ ≤ r and

rank(∇u(θ)) = n − r′ ≥ n − r.

Equality is achieved when the constraint function u(θ)
satisfies ∇u(θ) = V H

r , i.e., rank(∇u(θ)) = n − r.

As a consequence, we may need at least n − r constraints
to insure the identifiability of unknown parameters when
rank(Aθpt) = r < n. The next proposition will indicate that

the eigenvector matrix Ur is linked to the optimal minimum set
of constraints to regularizing the singular estimation problem.

Proposition 2. For any orthogonal matrix U ∈ Cn×r, (i.e.,
UHU = Ir) and UHAθptU is nonsingular, we have

λi[A#
θpt
] ≤ λi[U(UHAθptU)

−1
UH], i = 1,2, . . . , r, (17)

where λi[M] is the i-th largest eigenvalue of M .

Proof. By definition, Aθpt ⪰ 0, i.e., there exists a matrix LA

such that Aθpt = LH
ALA. Thus, we have

UHAθptU = UHLH
ALAU = (LAU)H(LAU) ⪰ 0. (18)

Since UHAθptU is nonsingular, UHAθptU and its inverse
are positive definite.

For a given B ≻ 0, we can express

UBUH = UUBΣBU
H
B UH = V ΣBV

H , (19)

where B
EVD= UBΣBU

H
B and V = UUB is orthogonal.

Therefore the eigenvalues of UBUH are identical to those
of B. Accordingly, we obtain

λi[U(UHAθptU)−1UH] = λi[(UHAθptU)−1]. (20)

The inequality of (17) becomes

λi[Σ−1r ] ≤ λi[(UHAθptU)−1], i = 1,2, . . . , r. (21)

We also know that M ⪰N ≻ 0 if and only if M−1 ⪯N−1 [62,
Theorem 24, page 24], thus (21) is equivalent to

λi[Σr] ≥ λi[UHAθptU], (22)

since Σr and UHAθpt
U are both positive-definite matrices.

Thanks to the Poincare separation theorem [62, page 236], the
inequality of (22) is always true. It ends the proof.

Therefore, we can conclude that

A#
θpt
⪯ U(UHAθptU)

−1
UH when UHU = Ir. (23)

Proposition 3. Given three positive-semidefinite Hermitian
matrices of the same rank M ,N , and X , if M ⪰N then

MXM ⪰NXN . (24)

Proof. Similar to (18), we also obtain

EXE = EHLHLE = (LE)H(LE) ⪰ 0, (25)

for all positive-semidefinite matrix E (L being a square root
matrix of X).

Now, let us denote E =M −N ⪰ 0, we have

MXM −NXN = (M −N)XM +NX(M −N)
= (M −N)X(M −N) + (M −N)XN +NX(M −N)
= EXE +EXN +NXE, (26)

which has the form of the generalized continuous-time Lya-
punov equation (GCTLE) [63], [64].

Since E and N are both positive semidefinite, there exists
a nonsingular Hermitian matrix Q such that

E =Qdiag(α)QH and N =Qdiag(β)QH , (27)
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where α,β ⪰ 0, thanks to [65, Theorem 7.6.4, page 487]
and [66, Theorem 39, page 103]. Therefore, all generalized
eigenvalues of the matrix pencil (−E,N ) are nonpositive.
Thanks to Lyapunov theorem [64, Theorem 4.4, page 47], we
can conclude that the GCTLE of (26) is positive semidefinite.
It ends the proof.

Accordingly, thanks to Propositions 2 and 3, we obtain

A#
θpt

JθptA
#
θpt
⪯ U(UHAθptUr)

−1
UH×

× JθptU(UHAθptU)
−1
UH = CMCRBu(θpt). (28)

Remark 1. The proposed GMCRB is simpler and more acces-
sible than the CMCRB. In some applications, we have to deal
with complicated (multiple) constraints on θ to regularize the
estimation problem, e.g., the channel state information or side
information (such as power, bandwidth, and delay constraints)
in wireless communications. Therefore, the expression of U
in (7) may not be readily computable. Moreover, different
constraints u(θ) may result in different values of the CMCRB.
Our GMCRB provides the tightest bound for the CMCRB.

Remark 2. The proposed GMCRB is consistent with the usual
MCRB for regular estimation problems, as shown in (10).

Remark 3. When the model is perfectly specified, the
GMCRB reduces to its counterpart in [55]. Particularly, Jθpt

and −Aθpt become the Fisher information matrix, that is,
GMCRB(θpt) = J#

θpt
.

IV. MIMO SYSTEM MODEL

We consider a convolutive MIMO system with Nt trans-
mit antennas and Nr receive antennas whose channels are
modelled to be finite impulse response (FIR). Suppose that
the MIMO channel remains constant during the transmission
period. Each transmitted block includes N data symbols and a
cyclic prefix (CP) of appropriate length, used a guard interval
to avoid the intersymbol interference from two successive
blocks.

The output vector y[t] = [y1[t], y2[t], . . . , yNr [t]]
⊺ ∈

CNr×1 received at Nr receive antennas is given by

y[t] =
L−1
∑
i=0

H[i]x[t − i] +n[t], (29)

where H is the Nr × Nt MIMO channel of order L − 1,
{x[t] ∈ CNt×1}t∈Z represent the transmitted symbols, and
n[t] is a Nr × 1 additive noise vector drawn from an
i.i.d. circular complex Gaussian distribution CN (0, σ2

nINr),
E{n[t]n[t]⊺} = 0.

After removing the CP, we often stack N output samples
{y[t]}N−1t=0 into a single vector y ∈ CNNr×1 as

y = [y[0]⊺,y[1]⊺, . . . ,y[N − 1]⊺]⊺. (30)

Accordingly, we can recast the convolution (29) into the
following standard linear expression:

y = Xh +n = (X⊺ ⊗ INr
)h +n, (31)

where the vector of channel parameters h and the noise vector
n are given by

h = [h⊺L−1,h
⊺
L−2, . . . ,h

⊺
0]
⊺
, (32)

n = [n[0]⊺,n[1]⊺, . . . ,n[N − 1]⊺]⊺, (33)

X ∈ CLNt×N is the circulant matrix formed by

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[N −L + 1] x[N −L + 2] . . . x[N −L]

⋮ ⋮ . .
.

⋮

⋮ x[N − 1] . .
.

⋮
x[N − 1] x[0] . . . x[N − 2]
x[0] x[1] . . . x[N − 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(34)

and operator “⊗” denotes the Kronecker product.
Due to the commutativity of convolution, we also have

Xh = T (h)x, (35)

where H = T (h) is the NrN ×NtN channel Toeplitz matrix
whose the first block column is [H[0]⊺, . . . ,H[L − 1]⊺,0]⊺

T (h) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H[0] 0 H[1]
H[1] ⋱ ⋮ H[2]
⋮ ⋱ H[0] ⋮
⋮ ⋱ H[1] ⋱ H[L − 1]

H[L − 1] ⋱ ⋮ ⋱ 0
0 ⋱ ⋮ ⋱ ⋮
⋮ ⋱ H[L − 1] ⋱ ⋮
⋮ 0 ⋱ ⋮
⋮ ⋮ ⋱ 0
0 . . . 0 H[0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (36)

and the data vector x is given by

x = [x[0]⊺,x[1]⊺, . . . ,x[N − 1]⊺]⊺ ∈ CNNt×1. (37)

Generally, necessary and sufficient conditions are required
for blind identifiability of the MIMO system [67]. These
identifiability conditions are often formulated in terms of the
concepts of “zeros” and “modes”. Particularly, the channel
transfer function should be irreducible, the number of input
modes and samples must be larger than the channel order. We
refer the reader to [67]–[69] for more details.

V. GMCRB FOR BLIND CHANNEL ESTIMATION

Blind techniques consider the estimation of channel parame-
ters from outputs only. Without prior information or additional
constraints, it is well-known that the blind estimation is
singular due to the inherent matrix ambiguity [67], so the usual
MCRB may not exist. Therefore, we propose to use the pro-
posed GMCRB in (9), instead, to determine the performance
limit of unbiased blind estimators when the channel order is
misspecified. Particularly, we focus on the deterministic model
and the stochastic model. In the former case, the unknown
transmitted symbols are assumed to be deterministic, whereas
in the latter case, they are assumed unknown random variables
i.i.d. drawn from a Gaussian distribution.
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A. Deterministic GMCRB

In this model, the output vector y is drawn from the
Gaussian distribution CN (Hx, σ2

nINrN) and the vector of
unknown parameters is ϕ = [h⊺,x⊺,hH ,xH , σ2

n]
⊺
.

Due to the imperfect knowledge of the channel order (L̃ ≠
L), the users will fit the assumed g(y∣θ) to y

g(y∣θ) = 1

(πσ2)NrN
exp( − 1

σ2
∥y − µ̃∥2

2
), (38)

with a new noise variance σ2 and a new mean µ̃ = X̃ h̃ = H̃x.
Here, X̃ is supposed to be formed as X̃ = X̃⊺ ⊗ INr with

X̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[N − L̃ + 1] x[N − L̃ + 2] . . . x[N − L̃]

⋮ ⋮ . .
.

⋮

⋮ x[N − 1] . .
.

⋮
x[N − 1] x[0] . . . x[N − 2]
x[0] x[1] . . . x[N − 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(39)

and H̃ = T (h̃) is the block circulant matrix whose the first
block column [H[0]⊺,H[1]⊺, . . . ,H[L̃−1]⊺,0]⊺. Instead of
ϕ, the parameters of interest now become

θ = [h̃⊺,x⊺, h̃H ,xH , σ2]⊺. (40)

The misspecified log-likelihood function is given by

ℓ(y∣θ) = const−NrN log(σ2) − 1

σ2
∥y − µ̃∥2

2
. (41)

The pseudo-true parameter θpt is derived from minimizing
KL(f(y)∣∣g(y∣θ)) or maximizing the expectation of ℓ(y∣θ)
over the true distribution fy, i.e.,

θpt = argmin
θ∈Θ

{NrN log(σ2) + σ2
nNrN + ∥µ − µ̃∥22

σ2
}, (42)

where µ
∆= Ef{y} = Xh is the true mean of y. The minimizer

of (42) can be obtained directly by applying the MLE (or
elegant methods surveyed in [67]), e.g.,

h̃pt = argmin
h̃

∥(I −PH̃)µ∥
2

2
, (43)

xpt = (H̃H
ptH̃pt)

#H̃H
ptµ, (44)

σ2
pt = σ2

n +
∥µ − H̃ptxpt∥22

NrN
, (45)

where PH̃
∆= H̃(H̃HH̃)−1H̃H .4

The first partial derivative of ℓ(y∣θ) is given by

∂ℓ

∂h̃∗
= 1

σ2
X̃H(y − µ̃), ∂ℓ

∂h̃
= 1

σ2
X̃ ⊺(y∗ − µ̃∗),

∂ℓ

∂x∗
= 1

σ2
H̃H(y − µ̃), ∂ℓ

∂x
= 1

σ2
H̃⊺(y∗ − µ̃∗),

∂ℓ

∂σ2
= 1

σ4
∥y − µ̃∥2

2
−
NrNp

σ2
.

4It is well known that the projection matrix PH̃ is invariant to any scale on
H̃, so the solution of (43) and (44) are not exactly unique, i.e. h̃ and x are
unique up to an unknown scalar. This scalar can be estimated by acquiring
further knowledge about the estimation model, e.g. we can determine it
completely with only one known sample of the input sequence x [67].

Let us denote e the error mean, i.e., e = µ − X̃pth̃pt.
Accordingly, we have

Ef{y − µ̃} = e,
Ef{∥y − µ̃∥22} = σ2

nNrN + ∥e∥22,
Ef{(y − µ̃)(y − µ̃)⊺} = ee⊺,

Ef{(y − µ̃)(y − µ̃)H} = σ2
nINrN + eeH .

From (4), Jθpt is derived from Ef{ ∂ℓ
∂θ∗
( ∂ℓ
∂θ∗
)H} at θ = θpt

Jθpt =
1

σ4
pt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jh,h Jh,x Jh,h∗ Jh,x∗ 0
Jx,h Jx,x Jx,h∗ Jx,x∗ 0
Jh∗,h Jh∗,x Jh∗,h∗ Jh∗,x∗ 0
Jx∗,h Jx∗,x Jx∗,h∗ Jx∗,x∗ 0
0 0 0 0 NrN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (46)

where

Jh,h = (Jh∗,h∗)∗ = X̃H(σ2
nI + eeH)X̃ ,

Jh,x = (Jx,h)H = X̃H(σ2
nI + eeH)H̃,

Jh,h∗ = (Jh∗,h)H = X̃Hee⊺X̃ ∗,
Jh,x∗ = (Jx∗,h)H = X̃Hee⊺H̃∗,
Jh∗,x = (Jx,h∗)H = X̃ ⊺e∗eHH̃,

Jh∗,x∗ = (Jx∗,h∗)H = X̃ ⊺(σ2
nI + e∗e⊺)H̃∗,

Jx,x = (Jx∗,x∗)∗ = H̃H(σ2
nI + eeH)H̃,

Jx,x∗ = (Jx∗,x)H = H̃Hee⊺H̃∗.

Taking the expectation of the second partial derivative of
ℓ(y∣θ) over f(y) results in Aθpt as

Aθpt =
−1
σ2
pt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X̃HX̃ X̃HH̃ 0 0 X̃He

H̃HX̃ H̃HH̃ 0 0 H̃He

0 0 X̃ ⊺X̃ ∗ X̃ ⊺H̃∗ X̃ ⊺e∗
0 0 H̃⊺X̃ ∗ H̃⊺H̃∗ H̃⊺e∗

eHX̃ eHH̃ e⊺X̃ ∗ e⊺H̃∗ NrN
σ2
pt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(47)

B. Stochastic GMCRB

Suppose that the unknown transmitted symbols are circular
Gaussian random variables i.i.d. drawn from CN (0, σ2

xINt).
For simplicity, we assume that the sources are with equal
power, σ2

x,k = σ2
x, k = 1,2, . . . ,Nt. Accordingly, the vector of

true unknown parameters is ϕ = [h⊺,hH , σ2
x, σ

2
n]⊺ and the re-

ceived signal y is a circular Gaussian variable with zero-mean
and covariance C which is given by C = σ2

xHHH +σ2
nINrN .

In the presence of channel order estimation error, the
following distribution function g(y∣θ) is used instead

g(y∣θ) = 1

πNrN detR
exp ( − yHR−1y), (48)

with the misspecified covariance R = σ2
xH̃H̃H + σ2INrN ,

while the zero-mean µ is correctly specified, thanks to
Ef{x} = 0. The parameters of interest now become

θ = [h̃⊺, h̃H , σ2
x, σ

2]⊺. (49)
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In this case, KL (f(y)∣∣g(y∣θ)) is given by

KL (f(y)∣∣g(y∣θ)) = log(detR
detC

) + tr{R−1C} −NrN.

(50)

Accordingly, the pseudo-true parameter θpt is derived from

θpt = argmin
θ∈Θ

{ log (detR) + tr{R−1C}}. (51)

The minimizer of (51) can be achieved by using the iterative
procedure in [70], [71]. In particular, at each iteration step,
we first optimize (51) w.r.t. σ2

x for a fixed h̃ and σ2. Given
σ2
x and h̃, we then estimate the noise power σ2. Finally, we

update h̃ based on the recent estimation of σ2
x and σ2.

Following the same derivation in [70], we exploit that the
first stage is equivalent to find σ2

x satisfying

H̃HR−1(C −R)R−1H̃ = 0. (52)

Therefore, we can obtain an estimate of σ2
x as

σ2
x =

1

NtN
tr{R̂x}, where (53)

R̂x = (H̃HH̃)−1(H̃HCH̃ − σ2H̃HH̃)(H̃HH̃)−1. (54)

The noise power σ2
n is updated by

σ2 =argmin
ξ2

{ 1

ξ2
tr{(I −PH̃)C} + (NrN −NtN) log ξ2}

= 1

NrN −NtN
tr{(INrN −PH̃)C}. (55)

The channel parameter h̃ can be derived directly from the
matrix R̂h̃ = σ

2
xH̃H̃H . More concretely, R̂h̃ is obtained by

minimizing the following optimization

R̂h̃ = argmin
Rh̃⪰0

{ log(detR) + NtN

NrN

NrN

∑
i=1

vH
i R−1vi

vH
i R−1oldvi

}

s.t. R = R̂h̃ + σ
2INrN . (56)

where Rold is the old estimation of R at the previous step and
V = [v1,v2 . . . ,vNrN ] is the root square of the true C [71].
The closed-form solution of (56) is given by

R̂h̃ =
NtN

∑
i=1
(λi − σ2)uiu

H
i , (57)

where λi is the i-th top eigenvalue of ∑NrN
i=1

viv
H
i

vH
i R−1old vi

and ui

is the corresponding eigenvector.
Now, we turn to the derivation of the stochastic GMCRB.
The first derivative of ℓ(y∣θ) = log g(y∣θ) is

∂ℓ

∂θ∗i
= − tr{R−1 ∂R

∂θ∗i
} + yHR−1

∂R

∂θ∗i
R−1y, (58)

where

∂R

∂h̃∗i
= σ2

xT (h̃)T (
∂h̃

∂h̃i

)
H

,
∂R

∂h̃i

= ( ∂R
∂h̃∗i
)
∗
,

∂R

∂σ2
x

= H̃H̃H ,
∂R

∂σ2
= INrN .

At θ = θpt, we have Ef{∂ℓ(y∣θ)∂θ∗i
} = 0, i.e.,

Ef{yHR−1
∂R

∂θ∗i
R−1y} = tr{R−1 ∂R

∂θ∗i
}. (59)

Accordingly, we obtain

Ef{
∂ℓ

∂θ∗i

∂ℓ

∂θj
}∣

θpt

= − tr{R−1 ∂R
∂θ∗i
} tr{R−1 ∂R

∂θj
}

+Ef{yHR−1
∂R

∂θ∗i
R−1yyHR−1

∂R

∂θj
R−1y}. (60)

The matrix Jθpt is particularly derived from Ef{ ∂ℓ
∂θ∗i

∂ℓ
∂θj
}∣

θpt

Jθpt(i, j) = tr{R−1
∂R

∂θ∗i
R−1CR−1

∂R

∂θj
R−1C} (61)

+ tr{R−1 ∂R
∂θ∗i
(R−1C − I)} tr{R−1 ∂R

∂θj
(R−1C − I)}.

The second derivative of ℓ(y∣θ) is

∂2ℓ

∂θj∂θ∗i
= tr{R−1 ∂R

∂θj
R−1

∂R

∂θ∗i
−R−1 ∂2R

∂θj∂θ∗i
}

+ tr
⎧⎪⎪⎨⎪⎪⎩
(R−1 ∂2R

∂θj∂θ∗i
R−1 −R−1 ∂R

∂θj
R−1

∂R

∂θ∗i
R−1

−R−1 ∂R
∂θ∗i

R−1
∂R

∂θj
R−1)yyH

⎫⎪⎪⎬⎪⎪⎭
. (62)

Taking the expectation of (62) over the true distribution f
results in

Aθpt(i, j) = − tr{R−1
∂R

∂θj
R−1

∂R

∂θ∗i
(R−1C − I)} (63)

+ tr{R−1 ∂2R

∂θj∂θ∗i
(R−1C − I)} − tr{R−1 ∂R

∂θ∗i
R−1

∂R

∂θj
R−1C}.

Remark 4. The MCRB for misspecified Gaussian models is
a special case of Slepian-Bangs-type formulas for Complex
Elliptically Symmetric distributions under model misspecifi-
cation, we refer the reader to [72] for more details.

VI. CASE STUDIES

In this section, we investigate two cases of the channel order
misspecification (overspecification and underspecification) to
demonstrate the effectiveness of the proposed GMCRBs over
the usual CRBs. A direct comparison between GMCRB and
CRB can be done if and only if the assumed model and true
model share the same parameter space. It is known that the
space of signal parameters is not changed in spite of the
channel order misspecification. We here conduct “indirect”
comparisons of GMCRB against CRBs w.r.t. both h̃ and x
in which the CRBs are derived directly from the assumed
model without being aware of the misspecification. Moreover,
we show that the proposed MCRBs reduce to the usual CRBs
when the channel order is accurately specified, i.e., the system
model is correctly specified.
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A. Overspecification (Lpt > Ltr)

When the channel order is overspecified, we include some
irrelevant parameters in the system model. Specifically, the
users estimate the channel using the assumed model

y = X̃ h̃ +n = [Xadd X ] [hadd

h
] +n, (64)

while the original model is

y = Xh +n = [Xadd X ] [0
h
] +n. (65)

Clearly, the model of (65) can be seen as a special case of
(64) with hadd = 0, so this overspecification is not really a
case of misspecification.

Under the assumption that the noise n ∼ CN (0, σ2
nINrN)

is independent of the data x (fixed or stochastic), it is easy
to verify the homoscedasticity, independence and normality of
the linear model (64):
● Ef{n∣x} = 0, Ef{n[i]n[j]⊺∣x} = 0 ∀i ≠ j,
● varf {n∣x} = σ2

nINrN ,
● n∣x ∼ CN (0, σ2

nINrN).
Accordingly, the MLE can be derived from the ordinary least-
square estimator (OLS) which is the best linear unbiased
estimator of (64) [73, Theorems 12.3f-g]. In particular, the
OLS/MLE of h̃ conditional on x can be given by

̂̃
h(y) = [Xadd X ]# ( [Xadd X ] [0

h
] +n), (66)

Ef{̂̃h(y)} = [0 h⊺]⊺ = h̃pt. (67)

The estimate from (64) while (65) is true is then unbiased.
In the following, we show that the inclusion of hadd can

lead to less accurate estimate for h. As a corollary, there is
no efficient unbiased estimator from (64) achieving the lower
bound provided by the classical CRB.

Proposition 4. The inclusion of hadd does not lead to bias,
but increases the variance and mean square error of the best
linear estimator.

Proof. Thanks to the Frisch–Waugh–Lovell theorem [74, Sec-
tion 2.4], estimators of h based on the assumed model (64)
are similar to the ones from the following modified model

Zaddy = ZaddXh +Zaddn, (68)

where Zadd = I−Padd with Padd = Xadd(XH
addXadd)

−1XH
add.

The OLS ĥ(y) conditional on x takes the form

ĥ(y) = (XHZaddX )
−1XHZaddy. (69)

Taking the expectation of ĥ(y) results in

Ef{ĥ(y)} = Ef{(XHZaddX )
−1XHZadd(Xh +n)}

= h +Ef{(XHZaddX )
−1XHZaddn} = h, (70)

because Ef{n} = 0 and n is independent of x.

0 10 20 30 40 50 60
10

-6
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-4

10
-2

10
0

10
2

Fig. 1: Overspecification: Lpt = 7 > Ltr = 5.

Since ĥ(y) is unbiased, its mean square error (MSE) matrix
is equal to its variance

MSE (ĥ(y)) = Cf(ĥ(y),h) = Ef{(ĥ(y) −h)(ĥ(y) −h)
H}

= (XHZaddX )
−1XHZaddEf{nnH}ZaddX (XHZaddX )−1

= σ2
n(XHZaddX )

−1 ⪰ σ2
n(XHX )−1, (71)

because of Zadd = ZaddZadd, Padd = PaddPadd and

XHX −XHZaddX = XH(I −Zadd)X = XHPaddX
= (PaddX )HPaddX ⪰ 0. (72)

From the true model (65), we obtain the best unbiased
estimator ĥtr(y) of h as

ĥtr(y) = (XHX )−1XHy, (73)

MSE (ĥtr(y)) = σ2
n(XHX )−1. (74)

Accordingly, we can conclude MSE (ĥ(y)) ⪰MSE (ĥtr(y)),
thanks to (71). It ends the proof.

For illustrative purpose, we consider the following convolu-
tive MIMO system: receive antennas Nr = 3, transmit antennas
Nt = 2, the true channel order Ltr = 5 and the number of
data samples N = 50. Particularly, the MIMO channel H is
generated at random whose entries are distributed i.i.d from
CN (0,1), while the transmitted symbols {x[t]}N−1t=0 are drawn
from CN (0,INt).

Fig. 1 plots trace of lower bounds (w.r.t. the channel param-
eters) versus SNR = 10 log(1/σ2

n) when Lpt = 7 > Ltr = 5.
We can see that the two proposed MCRBs are higher than
the classical CRBs which indicates that estimators from the
true model can be more efficient than the ones from the
overspecified model. The stochastic MCRB is lower than
the deterministic one. Both the deterministic and stochastic
MCRBs are proportional to the noise variance in a similar
manner to CRBs. Indeed, the pseudo-true channel is estimated
as hpt = [0,h⊺]⊺ and hence the mean and covariance are
correctly specified even if the number of parameters of in-
terest is ill-determined. Intuitively, deterministic bounds are
weaker than stochastic ones in regular problems. However, it
is difficult to draw conclusions about the relation when the
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estimation problem is singular. The experimental result shown
in Fig. 1 provides an example to indicate that the stochastic
Gaussian bounds may be lower than the deterministic ones.

B. Underspecification (Lpt < Ltr)

Due to the underspecification of the channel order, we
exclude some channel parameters that actually appear in the
system model. Without loss of generality, the true model
of (31) can be rewritten as

y = Xh +n = [Xomit X̃ ] [
homit

h̃
] +n. (75)

Instead of (75), the users estimate the assumed model

y = X̃ h̃ +n. (76)

Unlike the order overspecification, the underspecification
will introduce bias in estimators. Moreover, it leads to many
more problems than the overspecification which may give rise
to the inefficiency of channel estimation only.

Proposition 5. Normally, the exclusion of homit leads to
biased estimates.

Proof. The estimator ̂̃h(y) of h̃ from the assumed model (76)
is given by

̂̃
h(y) = (X̃HX̃ )−1X̃Hy. (77)

Taking the expectation of ̂̃h(y) results in

Ef{̂̃h(y)} = Ef{(X̃HX̃ )−1X̃H(X̃ h̃ +Xomithomit +n)}

= h̃ +Ef{X̃#Xomit}homit
∆= h̃ + b. (78)

Accordingly, ̂̃h(y) is biased. The bias b will disappear if
homit = 0 or P (X̃HXomit = 0) = 1 (i.e., X̃ and Xomit are
orthogonal) which is rarely common practice.

Since ĥ(y) is biased, the usual CRBs do not apply directly.
In this case, we consider the mean square error (MSE) of ĥ(y)
which is given by

MSEf {̂̃h(y)} = Ef{(̂̃h(y) − h̃)(̂̃h(y) − h̃)
H}, (79)

̂̃
h(y) − h̃ = b + X̃#n. (80)

Case 1: x is deterministic: When the data are determinis-
tic, the MSE of ̂̃h(y) is given by

MSEf {̂̃h(y)} = (X̃HX̃ )−1X̃HEf{nnH}X̃ (X̃HX̃ )−1 + bbH

= σ2
n(X̃HX̃ )−1 + bbH . (81)

Applying the same arguments in (68), the best linear un-
biased estimator of h̃ from the true model of (75) is given
by

̂̃
htr(y) = (X̃HZomitX̃ )

−1X̃HZomity

= h̃ + (X̃HZomitX̃ )
−1X̃HZomitn, (82)
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(a) Trace of the bounds on h̃.
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(b) Trace of the bounds on x.

Fig. 2: Underspecification: Deterministic model with the “flat”
channel H of Ltr = 5. The blue dashed line denotes the trace
of CRB w.r.t. x when Lpt = Ltr = 5 (i.e. perfect specification).

where Zomit = I−Xomit(XH
omitXomit)

−1XH
omit. The MSE of

̂̃
htr(y) is then determined as

MSEf {̂̃htr(y)} = σ2
n(X̃HZomitX̃ )

−1
. (83)

Next, we may want to compare MSEf {̂̃h(y)} in (81) with

MSEf {̂̃htr(y)} in (83). Thanks to (72), (83) is always greater
than the first term of (81). Therefore, if the bias is small
enough, it will lead to MSEf {̂̃h(y)} ≺ MSEf {̂̃htr(y)}.
On the other hand, if the bias b is large, the resulting
MSEf {̂̃h(y)} may be greater than MSEf {̂̃htr(y)}.

In order to illustrate this point, we here reuse the system
model in Section VI-A, but consider two types of channels: (i)
the “flat” channel, and (ii) the “exponential decay” channel.
They are respectively defined as

⎧⎪⎪⎨⎪⎪⎩

flat ∶ H[ℓ] = C[ℓ],
decay ∶ H[ℓ] = e−ℓ/10C[ℓ],

, ℓ = 0,1, . . . , Ltr − 1,

where C[ℓ] ∈ CNr×Nr is a “fixed” or deterministic matrix
whose entries are generated randomly from CN (0,1).
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(a) Trace of the bounds on h̃.
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(b) Trace of the bounds on x.

Fig. 3: Underspecification: Deterministic model with the “ex-
ponential decay” channel H of Ltr = 5. The blue dashed line
denotes the trace of CRB w.r.t. x when Lpt = Ltr = 5 (i.e.
perfect specification).

The experimental results are shown in Fig. 2 and Fig. 3.
When the channel is flat, i.e., all components {H[ℓ]}Ltr−1

ℓ=0
share the same relative importance to y, the exclusion of some
H[ℓ] may result in a large bias b. Then this may lead to that
MSEf {̂̃h(y)} ≻ MSEf {̂̃htr(y)}, and the classical CRB is
lower than the proposed GMCRB, as seen in Fig. 2(a). In
this case, estimators derived from the underspecified model
are less efficient than the ones from the true model. Note that,
the trace of GMCRBs is plotted w.r.t. the channel parameter
h̃; the lower bound simply means that we are dealing with
the model with the less number of parameters of interest.
We know that our underlying problem considers the joint
estimation of channel parameters and data symbols. To have a
fair comparison, we therefore compare these bounds w.r.t. the
input parameter x instead of h̃ because x is correctly specified.
As can be seen from Fig. 2(b) that the lower the misspecified
channel order is, the less accuracy estimators can attain.

Fig. 3 shows that when we deal with the exponential
decay channel, our GMCRB is, however, lower than the
classical CRB at low SNRs. Probably because the output
y is strongly affected by the first terms of H , so the the
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Fig. 4: Underspecification: Stochastic model with Ltr = 5.

resulting bias is small. At high SNRs, the classical CRB
is much lower than GMCRB. The proposed GMCRBs tend
to converge towards an error level as SNR increases. Since
the error mean e = µ − X̃pth̃pt is independent of the noise
and hence σ2

pt ≈ ∥e∥22/(NrN) ≫ σ2
n at high SNRs, while

the deterministic GMCRB is proportional to σ2
pt. Similar to

the system model with the “flat” channel, the data estimation
accuracy degrades gracefully when the underspecified channel
order decreases, as seen in Fig. 3(b).

Case 2: x is stochastic: In this case, the MSE of ̂̃htr(y)
and ̂̃h(y) are given by

MSEf {̂̃htr(y)} = Ef{GnnHGH}, (84)

MSEf {̂̃h(y)} = Ef{bbH} +Ef{X̃#nnH(X̃#)H}, (85)

where G = (X̃HZomitX̃ )
−1X̃HZomit.

We observe that

Ef{V nnHV H} = Ef [Ef{V nnHV H ∣V }]

= Ef [V Ef{nnH}V H ∣V ]

= Ef [σ2
nV V H] = σ2

nE{V V H}. (86)

Accordingly, we can simplify (84) and (85) as follows

MSEf {̂̃htr(y)} = σ2
nEf{(X̃HZomitX̃ )

−1}, (87)

MSEf {̂̃h(y)} = Ef{bbH} + σ2
nEf{(X̃HX̃ )−1}. (88)

Intuitively, we expect that the estimator ̂̃htr(y) from the
true model of (75) is more efficient than ̂̃h(y) from the
misspecified model of (76). However, making an unambiguous
comparison between MSEf {̂̃htr(y)} and MSEf {̂̃h(y)} is
difficult, because the result depends on the bias b and the
stochastic x. For instance, we can see from Fig. 4 that the
stochastic GMCRB is lower than the stochastic CRB in both
cases of channel order misspecification. Note that this is just
an example to demonstrate that the channel order underspeci-
fication may introduce bias and give rise to misleading results.
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Fig. 5: Complete Specification: Lpt = Ltr = 5

C. Correct specification (Lpt = Ltr)

When the channel order is correctly specified, the proposed
GMCRBs are identical to the classical CRBs, as seen in
Fig. 5. In this case, the system model is correctly specified,
i.e., g(y∣θ) = f(y∣ϕ), so the misspecified mean µ̃ and the
misspecified covariance matrix R become the true ones. The
pseudo-true θpt is equal to the vector of true parameters ϕ.
As a result, both two matrices Jθpt and −Aθpt reduce to
the classical Fisher information matrix (FIM). Particularly,
the deterministic GMCRB can be derived directly from the
following FIM:

FIMθ =
1

σ2
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XHX XHH 0 0 0
HHX HHH 0 0 0

0 0 X ⊺X ∗ X ⊺H∗ 0
0 0 H⊺X ∗ H⊺H∗ 0

0 0 0 0 NrN
σ2
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(89)

while the stochastic GMCRB turns out to be the stochastic
CRB whose FIM is defined as

FIMθ(i, j) = tr{C−1
∂C

∂θ∗i
C−1

∂C

∂θj
}. (90)

Remark 5. Although the analytic derivations presented in this
section are simple, our results are of interest to reconfirm
previous studies and draw a final conclusion: Channel order
underspecification leads to more problems than the overspec-
ification and we should always prefer overspecification to
underspecification in practice.

VII. CONCLUSIONS

In this paper, we have addressed the problem of analyzing
the theoretical performance limit of blind system identification
techniques under the misspecification of the channel order
through the lens of the MCRB. We have proposed the GMCRB
– a new generalized interpretation of the MCRB – in order
to deal with the nonexistence of the usual MCRB caused
by the inherent ambiguities in blind estimation. Two closed-
form expressions of the GMCRB were presented for the class
of unbiased blind estimators when unknown symbols are (i)
deterministic signals and (ii) stochastic signals. When the

channel order is overspecified, the inclusion of some irrelevant
parameters does not introduce bias but decreases the efficiency
of estimation. By contrast, the order underspecification leads to
bias and hence several misleading conclusions. Future works
will derive the MCRBs for semi-blind system identification.
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