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†AVITECH Institute, VNU University of Engineering and Technology, Vietnam

ABSTRACT
We studied the problem of sparse subspace tracking in the
high-dimensional regime where the dimension is comparable
to or much larger than the sample size. Leveraging power it-
eration and thresholding methods, a new provable algorithm
called OPIT was derived for tracking the sparse principal sub-
space of data streams over time. We also presented a theoret-
ical result on its convergence to verify its consistency in high
dimensions. Several experiments were carried out on both syn-
thetic and real data to demonstrate the effectiveness of OPIT.
Index Terms— Sparse subspace tracking, data streams, high
dimensions, thresholding, power iteration.

1. INTRODUCTION
Subspace tracking (ST) is an essential and fundamental prob-
lem in signal processing with various applications to sensor
array processing, wireless communication, and image/video
processing, to name a few [1]. It corresponds to the problem of
tracking a low-rank subspace that can represent data streams.
Most of subspace tracking methods are designed to estimate
the underlying subspace from the empirical/sample covariance
matrix. We refer the reader to [1–3] for good surveys on stan-
dard and robust ST algorithms.
In recent years, many theoretical results in random matrix
theory (e.g. [4–6]) indicated that the sample covariance ma-
trix is not a good estimator of the actual covariance matrix
in the high-dimensional regime where datasets are mas-
sive in both dimension n and sample size T , and typically
n/T→c ∈ (0,∞]. It might occur due to the time variation
of the principal subspace, and hence the “effective” sample
size of the considered processing window is limited accord-
ingly. Without further structural knowledge about the data,
subspace tracking algorithms turn out to be inconsistent in
such a regime. Interestingly, the consistency of covariance es-
timation can be guaranteed under suitably structured sparsity
regularizations [7–10]. Therefore, sparse subspace estima-
tion and tracking have recently gained much attention in the
signal processing community. In the literature, several good
methods have been proposed for sparse subspace estimation,
see [11–13] for examples and [14] for a comprehensive survey.
However, in an adaptive (online) setting, there have been few
studies on sparse subspace tracking (SST) so far.
Related works: As mentioned before, some online algorithms
have been introduced for sparse subspace tracking [3]. A few
of them are based on a two-stage approach in which one first
utilizes a standard ST algorithm to estimate the underlying

subspace and then seek a sparse basis of the estimation under
some sparsity criteria. Particularly in [15–17], several variants
of OPAST and FAPI were proposed to track the sparse prin-
cipal subspace. Another good approach is to regularize the
objective function that aims at accounting for the sparse basis.
In [18], the authors modified the objective function of PAST
by adding a ℓ1-norm regularization term on the subspace ma-
trix and then proposed a new robust variant of PAST called
ℓ1-PAST to optimize it. In [19], a Bayesian-based algorithm
called OVBSL was proposed to deal with the sparsity con-
straint on the subspace matrix. An advantage of OVBSL is
that it is fully automated, i.e., no finetuning parameter is re-
quired. However, these algorithms are only effective in the
classical regime where the sample size is much larger than the
dimension, i.e., n/T → 0 asymptotically.
Through the lens of machine learning and statistics, SST is
generally referred to as the problem of online sparse PCA
which often emphasizes the leading eigenvectors. In [20],
the authors proposed an extended version of the Oja algo-
rithm for online sparse PCA, namely OIST. Its convergence,
steady-state, and phase transition were also derived to inves-
tigate the use of OIST in high dimensions. OIST is, however,
designed only for rank-1 sparse subspaces. In [21], another
online sparse PCA algorithm was proposed and could deal
with rank-k subspaces. Specifically, this algorithm uses a
simple row truncation operator, which sets rows whose scores
are smaller than a threshold to zero, for tracking the sparse
principal subspace over time. However, this truncation opera-
tor is only designed for subspaces with a row-sparse support
(i.e. all eigenvectors must share the same sparsity patterns)
which may not always meet in practice. Indeed, it turns out to
be ineffective for a sparse subspace with another support (e.g.
elementwise sparsity). Its performance in terms of estimation
accuracy is typically lower than other SST algorithms, see
Fig. 1 for an illustration.
Contributions: In this paper, we introduce a new adaptive al-
gorithm called OPIT (OPIT stands for Online Power Iteration
via Thresholding) for sparse subspace tracking. OPIT takes
both advantages of power iteration and thresholding methods,
and hence offers several appealing features over the state-of-
the-art SST/online sparse PCA algorithms. Among them is
that OPIT is capable of tracking the sparse principal subspace
in both classical regime and high-dimensional regime. In ad-
dition, its procedure is flexible and very adaptable for dealing
with multiple incoming data streams. This feature is useful for
application areas wherein a block processing is required, i.e.,



a block of data samples is processed and analysed at one time.
Also, OPIT belongs to the class of provable subspace tracking
algorithms in which its convergence is guaranteed.

2. PROBLEM FORMULATION
Assume that at time t, we collect a data sample xt ∈ Rn×1

satisfying the standard signal model
xt = ℓt + nt. (1)

Here, ℓt ∈ Rn×1 is a low-rank signal living in a subspace1

spanned by a sparse matrix An×r with r ≪ n (i.e. ℓt = Awt,
where wt ∈ Rr×1 is a weight vector) and nt ∈ Rn×1 is an
additive spatially white noise vector independent of ℓt. Sparse
subspace tracking (SST) problem can be stated as follows:
SST Problem: Given a streaming set of data samples {xt}Tt=1,
we aim to estimate a sparse principle subspace At that com-
pactly represents the span of signals {ℓt}Tt=1.
Generally, the underlying subspace can be estimated from the
spectral analysis of the actual covariance matrix

C = E{xtx
⊺
t } =AE{wtw

⊺
t }A⊺ +E{ntn

⊺
t }. (2)

Applying eigenvalue decomposition (EVD) on C results in

C
EVD= UΛU⊺ = [Us Un] [

Λs 0
0 Λn

] [U
⊺
s

U⊺n
] . (3)

Here, Λ ∈ Rn×n is a diagonal matrix whose diagonal ele-
ments are eigenvalues of C sorted in decreasing order and
U ∈ Rn×n contains the corresponding eigenvectors. Accord-
ingly, Us ∈ Rn×r and Un ∈ Rn×(n−r) represent the principal
subspace and the minor subspace of C, respectively. The or-
thogonal projection matrix of the sparse principal subspace is
unique (i.e., UsU

⊺
s = AA# where (.)# is the pseudo-inverse

operator), so A can be obtained as A =UsQ
∗ with

Q∗ = argmin
Q∈Rr×r

∥UsQ∥0 s.t. Q is full-rank, (4)

where ∥.∥0 promotes the sparsity on A. In several applica-
tions, we often emphasize the principal subspace rather than
its specific basis, such as dimensionality reduction [22] and
array processing [23]. In this work, our main objective is to
track the principal (signal) subspace of A while the sparsify-
ing step (4) is optional.
Most state-of-the-art SST algorithms estimate the principal
subspace of the sample covariance matrix CT = 1/T ∑T

t=1 xtx
⊺
t

[3]. However, in a high-dimensional regime where n/T ↛ 0
a.s., CT is not a good estimator of C. This limitation in an
adaptive scheme is not necessarily due to a data shortage but to
the time variation which forces us to use a limited window of
time instead of all the data. Particularly, the relation between
CT and C is specified by the following proposition.

Proposition 1. The following error matrix is bounded in the
operator norm with a probability at least 1 − δ:

∥C −CT ∥2 ≤ cδ(σ
2
x

√
r

T
+ (2σnσx + σ2

n)
√

n

T
), (5)

1In an adaptive scheme, the matrix A may be slowly varying with time,
i.e., A =At. Our algorithm is capable of successfully estimating the subspace
as well as tracking its variation along the time.

where σ2
x = E{∥ℓt∥2}, σ2

n = E{∥nt∥2}, and cδ = C
√
log(2/δ)

with a universal positive number C > 0.

Due to the space limitation, we omit its proof here. As a result,
most of SST algorithms are not good in the high-dimensional
regime, as illustrated in Fig. 1(c)-(d).
Under certain conditions, it is proved in [7, 24, 25] that

∥C − η(CT )∥2 → 0 a. s. as T →∞, (6)
where η(.) is an appropriate thresholding operator. Thanks
to (6), in the next section, we derive a novel adaptive (online)
algorithm based on power iteration and thresholding technique
that is capable of tracking the sparse principal subspace in both
classical and high-dimensional regime.

3. PROPOSED METHOD
In this section, we introduce a novel sparse subspace tracking
algorithm namely OPIT which main steps are summarized in
Algorithm 1.

3.1. Assumptions
In what follows, we make some assumptions which are widely-
used in the theoretical analysis of subspace tracking algo-
rithms. In particular, (A1)-(A3) are necessary assumptions to
establish the convergence of OPIT.
(A1) The sparse basis matrix A is characterized by A =Ω⊛U.
Here, ⊛ denotes the Hadamard product, Ω ∈ Rn×r is a binary
mask whose entries are i.i.d. Bernoulli random variables with
a probability 1 − ρ, and U is a matrix chosen in the set U ∆=
{U ∈ Rn×r, ∥uk∥2 ≤ 1,1 ≤ κ(U) ≤ α} where κ(U) denotes
the condition number of U and 1 ≤ α < ∞. Accordingly,
the parameter ρ represents the sparsity level of A. Moreover,
A is sparse enough in the sense, the average number of non-
zero elements in each column is upper bound by

√
n logn,

i.e., ρ ≥ 1 −
√
logn/n. Together with the Bernoulli matrix Ω,

this condition allows trackers to correctly recover the sparse
subspace [26]. The constraint set U is to prevent very large
entries in A and ill-conditioned problems.
(A2) Data samples {xt}t≥1 are norm bounded, i.e., ∥xt∥2 ≤
M <∞∀t. Low-rank signals {ℓt}t≥t are supposed to be deter-
ministic and bounded. Noise vectors {nt}t≥1 are i.i.d. random
variables of zero mean and their power is lower than the sig-
nal power. Indeed, (A2) is a common assumption for subspace
tracking problems and holds in many applications [27].
(A3) Subspace coefficient vectors {wt}t≥1 are constrained to
the setW = {w ∈ Rr×1, ω1 ≤ ∣w(i)∣ ≤ ω2} with 0 ≤ ω1 < ω2 <
∞. Since both A and ℓt are bounded, wt is naturally bounded.

3.2. OPIT Algorithm
We first recall the main steps of the standard power iteration
(PI) method on which we primarily leverage in order to de-
velop our OPIT algorithm, for computing the dominant eigen-
vectors of Ct. At the ℓ-th iteration, PI particularly updates (i)
Sℓ ← CtUℓ−1 and (ii) Uℓ ← QR(Sℓ) be the Q-factor of QR
factorization of Sℓ. PI starts from an initial matrix U0 ∈ Rn×r

and returns an orthonormal matrix UL where L is the number
of iterations [1].



Algorithm 1: Online Power Iteration by
Thresholding (OPIT)

Inputs: {x1,x2, . . . ,xT },xi ∈ Rn×1, true rank r, window
of length W ≥ 1, a forgetting factor 0 < λ ≤ 1, and a
thresholding factor m

m =

⎧
⎪⎪
⎨
⎪⎪
⎩

round ((1 − ρ)n) if ρ is given,
round (10r logn) if ρ is unknown,

where ρ is the sparsity level of the sparse basis.
Initial: U0 = randn(n, r), S0 = 0n×r,E0 = 0r×r
Procedure:

for t = 1, . . . , T /W do
1. Xt = [x(t−1)W+1, . . . ,xtW ]

2. Zt =U
⊺
t−1Xt

3. St = λSt−1Et−1 +XtZ
⊺
t

4. Ŝt = η(St,m)

5. Ut = QR (Ŝt)

6. Et =U
⊺
t−1Ut

Output: Ut ∈ Rn×r

In an adaptive scheme, the iteration step of PI can coincide
with the data collection in time. At time t, the sample covari-
ance matrix Ct can be recursively updated by: Rt = Rt−1 +
xtx

⊺
t and Ct = 1

t
Rt. Accordingly, we can rewrite the first step

of PI as
St = St−1Et−1 + xtz

⊺
t , (7)

where Et−1 = U⊺t−2Ut−1 and zt = U⊺t−1xt. In this work, the
update (7) is further followed by an appropriate perturbation
Gt defined by the following thresholding operation η(.) as:

Ŝt
∆= η(St,m) =CtUt−1 +Gt, (8)

where the factor m can be determined as in Algorithm 1. Here,
Ŝt is particularly derived from St by keeping the m strongest
(absolute value) elements in each column of St and setting the
remaining elements to zero. Then, the second step of PI is re-
placed with Ut ← QR(Ŝt). In addition to the nice property (6),
another main motivation for using the thresholding operation
η(.) stems from the following proposition:

Proposition 2. When the perturbation Gt satisfies: ∥Gt∥2 ≤
ξσ2

x and 4∥A⊺tGt∥2 ≤ σ2
x cos θ(At,Ut−1) for some positive

ξ < 1, we obtain
tan θ(At,CtUt−1 +Gt) ≤ γ tan θ(At,Ut−1),

where 0 < γ ≤ 1 and θ(., .) denotes the canonical angle (the
largest principal angle) between two subspaces.

Proof of Proposition 2 follows immediately Lemma 2.2
in [28]. As a corollary, Ut will get closer to At over time.
The proposed OPIT algorithm also introduces two other pa-
rameters λ and W . Here, the forgetting factor λ (0 < λ ≤ 1) is
aimed at discounting the impact of old observations as well as
facilitating the tracking ability of OPIT in time-varying envi-
ronments. The inclusion of W is useful in some applications
where we often collect multiple data samples instead of a sin-
gle sample at each time t.

Computational complexity of OPIT is of order O(nr2) while
it only requires a space of O(2nr + r2) for saving Ut, St, and
Et at each time t. Convergence of OPIT can be specified by
Lemma 1 whose proof is omitted due to the space limitation.

Lemma 1. Suppose that assumptions (A1)-(A3) are met, the
true basis A is deterministic and unchanged over time, λ = 1,
and that the initialization matrix U0 and the number of data
samples satisfy the following conditions

t ≥ cδ
Wϵ2

(
√
r + (2σn/σx + σ2

n/σ2
x)
√
n)

2

, (9)

tan θ(A,U0) ≤
σ2
x + σ2

n

(1 +
√
r(1 +

√
2))σ2

x − (2 +
√
2)σ2

n

, (10)

with a small predefined error ϵ and a positive number cδ =
C
√
log(2/δ) where 0 < δ ≪ 1 and C is a universal positive

number. If Uτ is generated by OPIT at time t, then
sin θ(A,Ut) ≤ ϵ, (11)

with a probability at least 1 − δ.

4. EXPERIMENTAL RESULTS
In this section, we conduct some experiments on both synthetic
and real data to demonstrate the effectiveness of OPIT. Per-
formance of OPIT is evaluated in comparison with the state-
of-the-art algorithms. Our simulations are implemented using
MATLAB on a laptop of Intel core i7 and 16GB of RAM.2

4.1. Experiments With Synthetic Data
Following the formulation in Section 2, data samples {xt}t≥1
are randomly generated under the standard model

xt =Atwt + σnnt, (12)

where nt ∈ Rn×1 is a noise vector derived fromN (0, In), σn >
0 is to control the effect of the noise on algorithm performance,
wt ∈ Rr×1 is an i.i.d. Gaussian random vector of zero-mean
and unit-variance to represent the subspace coefficient. The
sparse matrix At ∈ Rn×r at each time t is simulated as At =
Ω ⊛ (At−1 + εNt), where Ω ∈ Rn×r is a Bernoulli random
matrix with probability 1 − ρ, Nt is a normalized Gaussian
white noise matrix, and ε > 0 is the time-varying factor aimed
to control the subspace variation over time. Simulation results
are averaged over 10 independent runs.
In order to evaluate the subspace estimation performance, we
measure the following distance between two subspaces

d(At,Ut)
∆= sin θ(At,Ut), (13)

where Ut refers to the estimated subspace at time t.
In these experiments, we investigated the performance of OPIT
in the classical and high-dimensional regimes. We used 1000
independent data samples from Eq. (12) in which the time-
varying factor ε was fixed at 10−3 and the value of σn was set
to two levels: 10−1 and 10−3. Here, two sparsity levels were
also considered, including 50% and 90%. The length of win-
dow was set to W = ⌊logn⌉ for the cases of high dimensions
and low SNR levels, while we used W = 1 for others. We fixed

2MATLAB Code: https://github.com/thanhtbt/SST/.
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0 250 500 750 1000
10

-4

10
-2

10
0

(b) n = 50, r = 2, and ρ = 90%

0 250 500 750 1000
10

-4

10
-2

10
0

(c) n = 10000, r = 10, and ρ = 50%
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(d) n = 10000, r = 10, and ρ = 90%
Fig. 1: Time-varying environments: data samples T = 1000
and time-varying factor ε = 10−3.

a) Lobby b) Hall

Fig. 2: Two video sequences used in this paper.

the forgetting factor λ at 0.97 for all simulations. The track-
ing ability of OPIT was compared to the state-of-the-art algo-
rithms including ℓ1-PAST [18], SS-FAPI [17], SSPCA [21],
and AdaOja [29]. Their parameters were kept default to have
a fair comparison.
Experimental results are shown as in Fig. 1. We can see that
in the classical regime, OPIT was one of the two best effective
SST algorithms, together with SS-FAPI, see Fig. 1(a)-(b). At a
high sparsity level (i.e. ρ = 90%), the two algorithms provided
much better estimation accuracy than ℓ1-PAST, SSPCA, and
AdaOja. Indeed, OPIT’s convergence rate was faster than SS-
FAPI. At a high noise level (i.e. σn = 10−1), OPIT provided
the best subspace estimation accuracy. In the high dimensional
regime, OPIT outperformed other SST algorithms completely
at both low and high levels of noise as well as sparsity, as
shown in Fig. 1(c)-(d).
4.2. Experiments With Real Video Data
Two video sequences were used to illustrate the effectiveness
of OPIT, including “Lobby” and “Hall” (see Fig. 2 for an illus-
tration). In these experiments, we compared the performance
of OPIT with the state-of-the-art subspace tracking algo-
rithms (i.e., ℓ1-PAST, SS-FAPI, and PETRELS-ADMM [27])
and tensor tracking algorithms (i.e., SOAP [30], OLCP [31],
OLSTEC [32], and ROLCP [33]). In order to apply these sub-
space tracking algorithms to the video sequences, each video

Dataset “Lobby” “Hall”
Tensor size 128 × 160 × 1546 174 × 144 × 3584
Matrix size 20480 × 1546 25056 × 3584

Evaluation metrics time(s) error time(s) error
SOAP 14.29 0.842 21.72 0.989

OLCP 10.50 0.161 19.98 0.154

OLSTEC 44.25 0.037 92.82 0.041

ROLCP 4.32 0.114 10.74 0.120

PETRELS-ADMM 118.4 0.015 305.5 0.018

ℓ1-PAST 14.11 0.031 33.73 0.101

SS-FAPI 12.99 0.023 32.72 0.100

OPIT
16.32 0.013 50.78 0.056(W = 1)

OPIT
1.89 0.021 5.62 0.086(W = ⌊log(IJ)⌉)

Table 1: Runtime and averaged relative error of adaptive algo-
rithms on tracking the four video sequences.

0 375 750 1125 1500
10

-4

10
-2

10
0

10
2

Fig. 3: Tracking ability of algorithms on the “Lobby” data.

frame of size I × J was reshaped into a IJ × 1 vector. Follow-
ing the studies on video tracking in [27] and [33], the tensor
rank and subspace rank were set to 10 for all simulations.
Simulation results are shown statistically in Tab. 1 and graphi-
cally in Fig. 3. As can be seen that OPIT provided a compet-
itive estimation accuracy as compared to PETRELS-ADMM
while its runtime was much faster than that of the ADMM-
based tracking algorithm. Indeed, OPIT had a better perfor-
mance than PETRELS-ADMM on the “Lobby” data. Also,
OPIT outperformed most tracking algorithms, apart from
PETRELS-ADMM. With respect to runtime, ROLCP was the
fastest “one-pass” tracking algorithm, several times faster than
the second-best. Interestingly, our algorithm is also designed
for handling a block of multiple incoming samples at each time
(i.e. the length of window W > 1). When W = ⌊log(IJ)⌉,
OPIT can be even faster than ROLCP while still retaining a
reasonable tracking accuracy.

5. CONCLUSIONS
In this paper, we have proposed a new provable sparse sub-
space tracking algorithm, called OPIT, capable of tracking the
sparse principal subspace in both classical regime and high di-
mensional regime. In the classical regime, OPIT provides a
competitive subspace estimation accuracy and its convergence
rate is very fast at a high SNR level. In the high-dimensional
regime, OPIT outperforms other sparse subspace tracking al-
gorithms, its estimation accuracy is much better than that of
the second-best, SS-FAPI. Simulations carried out on video
sequences of different scenarios have indicated that OPIT has
potential for real applications.
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