
Multi-level just-enough elasticity for MQTT brokers of Internet
of Things applications

Linh Manh Pham1
• Nguyen-Tuan-Thanh Le2 • Xuan-Truong Nguyen1,3

Received: 4 May 2021 / Revised: 2 May 2022 / Accepted: 18 May 2022
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Applications for the Internet of Things (IoT) are rapidly having an impact on all areas of daily life. Every day, its

embedded devices generate loads of data that requires efficient network infrastructure. The integration of lightweight

communication protocols such as Message Queuing Telemetry Transport (MQTT) is to send millions of IoT messages back

and forth with as few errors as possible. In practice, IoT big data analytic systems are often deployed with highly regarded

MQTT solutions to handle huge amounts of dynamic data and achieve scalability. However, these solutions do not adapt

well to fluctuations in workload, so they are not elastic yet. This article introduces a novel framework that provides just-

enough elasticity for MQTT brokers with multiple levels of virtualization and its implementation using EMQX MQTT

broker, Kubernetes container-orchestration system and OpenStack cloud environment. Various experiments based on a real

life IoT application are conducted to validate our proposed framework and its elastic functionality.

Keywords Elasticity � MQTT broker � Internet of Things � Cloud computing � Smart homes

1 Introduction

In the Fourth Industrial Revolution or Industry 4.0 era,

Internet of Things (IoT), where billions of devices connect

and communicate with each other, has been changing all

aspects, with different scales, of our life. IoT helps to

deliver (big) data through the Internet either with or

without human interventions. In 2020, 31 billion devices

are connected as IoT devices and it is predicted that by

2050 this number will surge pass 170 billion limit [1]. In

addition, an IoT network can hold up 50 to 100 trillion of

connected objects, and it can track the movement of every

single object. As an estimation, each person living in urban

areas nowadays can be surrounded by 1000 to 5000

tracking devices. In the same context, currently, there are

about 4 billion people connected, more than 25 million

applications, more than 25 billion embedded and intelligent

systems, which generate 50 trillion gigabytes of data [2].

The IoT market can bring up to 4 trillion USD in revenue

for its service providers [2].

Maintaining the communication among such huge

number of IoT devices and handling the data explosion are

difficult tasks. Especially, when IoT applications cross the

boundary of home-wide scale to reach the skyline of city or

country-wide systems, the number of things can extremely

increase at an unpredictable rate. Therefore, IoT service

providers must deploy a robust and scalable network

infrastructure. Nowadays, the modern IoT infrastructures

contain an essential component called Message Queuing

Telemetry Transport (MQTT) servers or brokers. These

brokers implement MQTT protocol, an open Machine-to-

Machine (M2M) protocol devised since 1999 and released

by OASIS and ISO (ISO/IEC 20922) [3] as an industrial

standard. Due to its advantages such as lightweight blue-

print, bandwidth-efficient design, less consumed energy, or

& Linh Manh Pham

linhmp@vnu.edu.vn

Nguyen-Tuan-Thanh Le

thanhlnt@tlu.edu.vn

Xuan-Truong Nguyen

nguyenxuantruong@hpu2.edu.vn

1 VNU University of Engineering and Technology, 144 Xuan

Thuy, Cau Giay, Hanoi, Vietnam

2 Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam

3 Hanoi Pedagogical University 2, 32 Nguyen Van Linh, Xuan

Hoa, Phuc Yen, Vinh Phuc, Vietnam

123

Cluster Computing
https://doi.org/10.1007/s10586-022-03636-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-9170-756X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-022-03636-w&domain=pdf
https://doi.org/10.1007/s10586-022-03636-w

spatial/temporal decoupling, MQTT brokers are dominat-

ing the IoT world indisputably.

Recent MQTT brokers implement both centralized and

distributed approaches and have the capability of handling

millions of connected clients in a short period of time.

However, only few of them keep up with fluctuation of

workload, caused by unpredictable increase or decrease of

number of IoT devices at certain time. In reality, a city-

wide IoT application often have to deal with the issue of

dispersed and intermittent devices, that causes a change in

the number of clients. For instance, smart cars often con-

nect a vehicle network in the rush hours rather than regular

ones, and therefore generate more data within these peri-

ods. This requirement leads to the need of developing

novel MQTT systems that not only have the scalability but

also able to keep pace with the change of workload, gen-

erated by billions of IoT devices. In other words, we need a

new approach to make MQTT brokers elastic.

Elasticity is a native characteristic of cloud computing,

according to NIST [4]. Thanks to it, cloud resources are not

overused or underused, and therefore not only saves pro-

vider money but also improves customer experience.

Nowadays, many IoT applications have been being

deployed on cloud or ready to move on it. Therefore, IoT

resources, such as MQTT brokers, can also be implemented

on cloud to benefit its elasticity feature.

Traditionally, elasticity in the cloud often have to deal

with ‘‘fatty’’ virtual machines (VM) that have elusive vir-

tualization overhead and leave resource holes. Resource

holes, as the result of scaling-out VMs with a fixed con-

figuration (i.e., flavor), may result in overprovisioning

resources that do not really match the expected amount of

resources. However, the redundant resource is sometimes

not usable because its capacity might be less than the

amount needed for the target application. An effective

algorithm, to reduce the resource holes, need to be pro-

posed to obtain just-enough elasticity.

In this article, we propose a novel framework to make

MQTT brokers elastic. As the result, our contributions are

following:

– A novel framework providing multi-level just-enough

elasticity while retains all features of MQTT protocol.

– A concrete implementation of our proposed framework

using an open-source MQTT broker software (EMQX),

a container-orchestration system (Kubernetes), and a

private cloud platform (OpenStack).

– The experiments are conducted to validate the sound-

ness of our proposed approach using the open-source

implementation aforementioned.

The rest of this article is organized as follows. In Sect. 2,

the background of MQTT is provided. In Sect. 3, we

highlight related work. Then, we describe in detail the

overall architecture of our proposed MQTT framework in

Sect. 4. The multi-level just-enough elasticity is presented

in Sect. 5. Next, the experiments and results are reported in

Sect. 6. Finally, we conclude in Sect. 7.

2 Preliminary of MQTT

2.1 MQTT

MQTT is a lightweight messaging protocol designed for

communication between devices and computer systems [5].

Due to its lightweight design, MQTT is suitable for a wide

variety of IoT applications where different restriction

requirements must be satisfied such as low bandwidth, low

energy, or intermittent sensor nodes. MQTT follows client/

server mechanism, where each device is a client and con-

nects to a server, which can be understood as a broker,

through TCP (i.e., Transmission Control Protocol). Broker

is responsible for coordinating all messages from the sen-

ders to the correct receiving side. MQTT’s high-level

architecture consists of two main parts: Broker and Clients.

In particular, the broker is considered as the center, it is the

intersection of all connections coming from the clients. The

broker’s main task is to receive message from publishers,

line messages in queues, and then transfer them to a

specific address. The sub-task of the broker is that it can

take on a few more features related to the communication

process such as message security, message storage, logs.

While space decoupling characteristic helps IoT applica-

tion separate its high volume of available data from the

origin of data, time decoupling one is a necessity for IoT

applications because of its distributed nature. Both types of

decoupling are supported by MQTT.

The communication mechanism of MQTT is relatively

simple. First, the MQTT clients need to establish a con-

nection to MQTT broker by sending a CONNECT mes-

sage. A CONNACK message from the broker sent back to

the client is to confirm for a successful connection. After

that, the operations of publishing/subscribing messages to/

from the broker can be done. The publisher needs to send a

PUBLISH message containing a topic name. A topic (i.e.,

subject of interest) is a string used by broker, where sub-

scribers register to it for getting copies of needed messages.

To do that, the subscriber must send a SUBSCRIBE mes-

sage containing its interesting topic to the broker. Topics

can be organized in a hierarchical way (i.e., topic trie) to

take advantage of wildcard filters, such as ‘‘#’’ or ‘‘?’’. In

general, the clients can publish/subscribe to more than one

topic using these wildcards for convenient.

In MQTT, the communication reliability can be

obtained by specifying the levels of Quality of Service

(QoS). The Quality of Service (QoS) level is an agreement

Cluster Computing

123

between the sender and the receiver of a message that

defines the guarantee of delivery for a specific message.

There are three QoS levels in MQTT. At level 0, the

delivery is not acknowledged and the message is sent only

once in any cases. The recipient does not acknowledge

receipt of the message and the message is not stored and re-

transmitted by the sender. QoS level 0 is often called ‘‘fire

and forget’’ and provides the same guarantee as the

underlying TCP protocol. At level 1, if no acknowledge-

ment is received by the publisher, it will retry to send the

message multiple times. At level 2, exactly one copy of the

message is received by the subscriber by a four-part

handshake agreement between the publisher and sub-

scriber. It is the safest and slowest quality of service level.

To ensure that no data is lost, IoT applications clearly need

a lightweight and powerful solution like the MQTT broker

model. Some of the most widely used MQTT brokers by

far are Mosquitto, HiveMQ, VerneMQ, Moquette, EMQX

[6], etc.

In the last decade, many IoT applications have deployed

MQTT brokers such as [7–12]. A common structure of an

IoT application implementing MQTT brokers deployed

with a remote data center, for example, in a cloud envi-

ronment, described in Fig. 1. The goal of the application is

to collect data from multiple IoT devices and sensors, then

process and store these data, ultimately it sends notifica-

tions and reports to end users (using laptops, mobile

devices, tablets, etc.). In some cases, the data collected

does not require analysis but can still be published directly

to topics that have been registered by end users. Terminal

users can publish control commands to commands topics in

the broker just like any other type of MQTT message.

These notifications will be stored in the cloud repository

and transmitted to IoT devices or sensors under a number

of scheduled mechanisms. In the case of time-sensitive

applications, command messages may not need to go

through the Cloud but will be sent directly to IoT devices.

We found that the end-user interface and data analysis

system, IoT devices are all MQTT clients producing and

using remote measurement data.

2.2 Distributed MQTT Brokers

Some IoT applications often deploy a centralized MQTT

broker to maintain all registered topics. However, brokers

in this model are easy to become the bottlenecks of the

whole system. In order not to encounter this, several

solutions have been recommended, which can be divided

into two types of distributing systems: the bridged brokers

and the clustered brokers. With the former, two brokers

could directly send more messages from clients whose

locations remained segregated. Published notices are for-

warded from a broker to a broker through its bridge under a

specific access policy. A full network needs to be formed

between brokers (i.e., a broker who can communicate with

all other brokers) so that any MQTT client can connect

with any broker it wants. Therefore, the use of the bridging

model to get elasticity is very complicated. It is only

suitable for networks that have a few MQTT brokers. Some

MQTT brokers support the bridge model including

HiveMQ, EMQX, JoramMQ, Moquette, Mosquitto, Ver-

neMQ, etc. [13]. Some implementations of this model have

been reported in the work of Schmitt et al. [14], and

Zambrano et al. [15].

In the clustered model, one of the brokers (B0) keeps the

original topic and the subtopics to which its subscriptions

are associated. The other brokers (B1, B2, etc.) keep only

related subtopics derived from the original topic at B0.

Topic branches dynamically generated in a broker corre-

spond to MQTT subscriptions for this broker. Conse-

quently, the communication cost between brokers

decreases relative to the bridging model. Furthermore, the

knowledge of topic trie and routing table are transferred

between brokers, so any MQTT client can connect/recon-

nect with any broker to set up/resume the session. There

are very few MQTT brokers who fully support the clus-

tering model including EMQX, HiveMQ, RabbitMQ,

VerneMQ [16]. Some studies following this trend can be

mentioned such as the work of Jutadhamakorn et al. [17],

Thean et al. [18], and Detti et al. [19].

3 Related work

3.1 Elastic MQTT broker

The term elasticity are one of the essential characteristics

of cloud computing [20]. With this special feature, cloud

resources can be supplied or released corresponding to

demand. Today, IoT applications are often deployed in the

cloud to take advantage of this environment such as on-

MQTT
Broker

Sensors, Actuators,
Devices…

End Users (tablet,
smart phone,

laptop…)

Data center
(processing, analyzing,

storage,…)
Processed

Data
Pushed Data

Notifications
and reports

Actions
Collecting

data

Control
Commands

Internet

Fig. 1 A common structure of an IoT application implementing

MQTT brokers

Cluster Computing

123

demand measured services, broad network access, and

rapid elasticity. Some solutions attempt to provide elas-

ticity components of IoT applications, including Proliot

[21], DOCKERANALYZER [22], ACD [23]. Neverthe-

less, very few elastic solutions for the MQTT broker have

been proposed such as Brokel [24], E-SilboPS [25]. Brokel

defines a multi-level elasticity model for Pub/Sub brokers

(including MQTT) in general, so many edits dedicated to

MQTT have been simplified or ignored. E-SilboP is a

resilient content-based publishing/subscribing system

specifically designed to support context-aware sensing and

communication in IoT-based services. Therefore, many of

the MQTT protocol’s adjustable QoS parameters are

ignored and it provides only content-based elasticity. These

two solutions implement one of the distributed model

mentioned in the Sect. 2.2. Our framework also follows the

distributed model but focuses only on MQTT protocol,

allowing customization of many MQTT-specific QoS

parameters.

3.2 Multi-level elasticity for MQTT broker

A container is a standard unit of software that encapsulates

source code of an application and its dependencies so that

this application can operate quickly and reliably from one

environment to another one. Instead of using hardware

virtualization like virtual machines, containerization is a

virtualization approach at the operating system level,

which allows multiple containers to run directly on the

operating system kernel. Containers are lightweight

because they share the same operating system kernel, boot

much faster, and use a portion of memory compared to

loading the entire operating system. These advantages

allow container-based applications to be deployed easily

and consistently [26], regardless of the deployment envi-

ronment as private data-center, public cloud, or even the

developer’s personal laptop.

Containerization provides a clear separation of produc-

tion concerns. Now, developers focus on application logic

and dependencies only, while IT operation teams can

simply focus on deployment and management without

concern for application details such as software versions

and configurations specific to the application. Currently,

there are some popular types of containers such as Docker,

LXC, OpenVZ as well as some platforms, cluster man-

agement tools of these types such as Docker Swarm,

Kubernetes, Apache Mesos, etc.

While a virtual machine is often considered as a coarse-

grained resource [27], a virtualized container is seen as a

more fine-grained one. The combination of these two types

of virtualization reduces the possibility of creating resource

holes, therefore it helps to realize just-enough elasticity.

Although the multi-level elasticity is already implemented

in some research projects involving data stream processing

[28, 29] or cloud services [30], to the best of our knowl-

edge, this is the first time it is mentioned for MQTT

brokers.

4 Proposed elastic MQTT framework

In this section, we introduce a novel MQTT framework

providing multi-level just-enough elasticity. The frame-

work is designed to have flexible architecture containing a

set of representative modules. When an implementation of

the framework is deployed on the cloud, each of these

representative modules will be specialized into a concrete

component-off-the-shelf (COTS) one. Therefore the mod-

ules of framework can be substituted flexibly to obtain new

features, earn enhanced performance, or lower software

licensing fees. We also present a concrete implementation

of each of the modules constituting the framework. The

implementation mainly targets for cloud-based IoT appli-

cations which require elasticity as an essential feature.

These applications include, but not limited to, big data

analytics, latency-sensitive ones. With the principle of

software development serving the e-science community

[31], we prefer combining the most pertinent open-source

solutions into our framework. Figure 2 depicts the overall

architecture of proposed framework composed of following

modules.

4.1 MQTT broker cluster

A cluster of MQTT brokers implementing distributed

pub/sub model with customizable QoS parameters. The

cluster consists of a number of runtime systems called

broker nodes. Nodes connect to each other using TCP/IP

sockets and communicate by message passing. Each node

keeps its parts of topic tries and current subscriptions. This

mechanism routes published messages across the cluster

Cloud Infrastructure

Te
le

m
e

tr
y

MQTT Broker Cluster

Orchestrator

Messaging
Server

Metering
Metric

Storage
Alarm

Load Balancer

st
n

eil
C

T
T

Q
M

Elasticity
Controller

Fig. 2 Architecture of the multi-level elasticity framework for MQTT

brokers

Cluster Computing

123

nodes from the first node receiving the messages to the last

one delivering the messages to the subscribers. The nodes

can join cluster manually or automatically. With automatic

way, node discovery and autocluster mechanisms such as

IP multicast, dynamic DNS, or etcd [32] need to be sup-

ported. The nodes can be installed directly on the VMs or

on the containers inside the VMs.

We choose EMQX for our MQTT brokers. EMQX

provides concurrent, fault-tolerant, and distributed broker

nodes. It is one of few open-source MQTT solutions which

offer clustered brokers. Moreover, EMQX is the only one

implementing all three levels of MQTT QoS, MQTT pro-

tocol for regular networks, and MQTT-SN protocol for

sensor ones. EMQX supports node discovery and auto-

cluster with various strategies as in the case of IP multicast,

dynamic DNS, etcd, and Kubernetes [33]. By that when a

broker node arrives or leaves according to elastic actions,

the cluster automatically recognizes the changes and

updates its configuration to reflect new number of nodes.

The cluster itself can be implemented on Kubernetes to

benefit advantages of container virtualization.

4.2 Load balancer

A Load Balancer (LB) is often deployed in front of a

MQTT cluster to distribute MQTT connections and traffic

from devices across the MQTT clusters. LB also enhances

the high availability of the clusters, balances the loads

among the cluster nodes, and makes the dynamic expansion

possible. The links between the LB and cluster nodes are

plain TCP connections. By this setup, a single MQTT

cluster could serve millions of clients. Thanks to LB,

MQTT clients only need to know one point of connection

instead of maintaining a list of MQTT brokers.

Some commercial LB solutions are supported by EMQX

such as AWS, Aliyun, or QingCloud. In the terms of open-

source software, HAProxy [34] can serves as a LB for

EMQX cluster and establishes/terminates the TCP con-

nections. Many dynamic scheduling algorithms can be

assigned by HAProxy such as round robin, least connec-

tion, or randomness.

4.3 Cloud infrastructure

It dynamically manages, provides, and releases virtual

resources for gaining elasticity. To obtain ‘‘unlimited’’

resources, an implementation of private, public, or hybrid

cloud may need to be carried out. To serve e-science

community, OpenStack [35], an open-source private Cloud

is chosen to provision and release virtual resources. With

world-wide supported user community and large well-

maintained services, OpenStack is a fit for our goal. Some

specific OpenStack services deployed for our

implementation are Nova, Keystone, Glance, Horizon,

Swift, and Neutron. Since we chose OpenStack cloud, the

following modules should deploy services supported offi-

cially by OpenStack.

4.4 Orchestrator

This component parses a system-component description in

its own high-level domain specific language (i.e. DSL) and

then deploys, manages, and monitors the entire life cycle of

all involving components. Those components may include

resources such as virtual machines, containers, images,

security groups, alarms, scaling policies, etc. To keep the

thing simple and user-friendly, grammar of the DSL can be

derived from XML, JSON, or YAML. The sub-module

Elasticity Controller listens elasticity events to trigger

corresponding actions. In the framework, the Orchestrator

deploys and manages MQTT brokers as well as resources

of the Telemetry module such as Metering, Metric Storage,

and Alarm.

The main orchestrator supported by OpenStack is Heat

service [36]. The infrastructure for a cloud application is

described in a Heat template file. Infrastructure resources

that can be described including servers, volumes, users,

security groups, floating IPs, etc. Heat also provides an

autoscaling service integrating with sub-modules of

Telemetry, so a scaling group can be included as a resource

in the template. This is a perfect fit for our elasticity goal.

Templates can also delineate the dependencies between

resources (e.g., this floating IP is assigned to this VM). This

helps Heat to create all of managed components in the

correct order to completely launch application. Heat man-

ages the entire life cycle of the application and it knows

how to make the necessarily dynamic changes. Finally, it

also takes care of deletion of all the deployed resources

when the application accomplishes.

To do orchestration at container level, we implement

Kubernetes as a container orchestrator. Kubernetes, a so-

called container orchestration engine, is an open source

platform that automates the management, scaling, and

deployment of applications as containers. It eliminates lot

of manual processes involved in deploying and extending

containerized applications. Kubernetes orchestration

allows users to build application services that span multiple

containers. It schedules those containers on a cluster,

expands containers, and manages the condition of the

containers over time. With Kubernetes, we pack cluster

nodes into Docker containers which are embraced by

Kubernetes pods. Pods are the basic Kubernetes scheduling

unit, representing a group of one or more application

containers and a number of shared resources for those

containers. Containers in the same pod share the same IP

address and port space. They are always located at the

Cluster Computing

123

same location, scheduled together, and run in a shared

context on the same node. Each pod is attached to the node

where it is scheduled, and stays there until it is terminated.

To perform autoscaling, two techniques can be imple-

mented on Kubernetes: Vertical Pod Autoscaler and Hor-

izontal Pod Autoscaler.

Horizontal Pod Autoscaler (HPA) is a technique to

automatically increase or decrease the number of pods by

collecting and evaluating CPU usage metrics from the

Kubernetes Metrics Server. The number of pods will be in

the range min and max which are set when generating

HPA. The HPA is implemented as a Kubernetes API

resource and as a controller. Every 15 seconds, the con-

troller periodically checks and adjusts the number of pods

so that the observed average CPU usage matches the value

specified by the user.

HPA calculates the number of pods based on a formula:

#RequiredPods ¼ Ið#CurrentPods � PresentValue

ExpectedValue
Þ

ð1Þ

where: I() is the rounding function.

For example, the user wants the CPU usage to stay at

60%, but the current demand increases it to 80% and the

current number of pods is 2. Then,

#RequiredPods ¼ Ið2 � ð80%Þ=ð60%ÞÞ ¼ Ið2:67Þ ¼ 3, so

the system needs to create 1 more pod for the CPU usage to

remain at no more than 60%.

Vertical Pod Autoscaler (VPA) is a technique that

automatically increases and decreases resources such as

CPU and memory for pods depending on the needs of the

pods. Technically, VPA does not dynamically change

resources for existing pods; instead, it checks the managed

pods to see if the resources are set correctly and if incor-

rectly, removes them so that the controller can create other

pods with updated configurations.

We see that VPA will increase service downtime when

doing elasticity actions since this technique removes the

pods instead of expanding or shrinking them dynamically.

Hence we only use HPA as the main technique for elas-

ticity at container level.

4.5 Telemetry

The telemetry module consists of three sub-modules, as

follows: Metering: The goal is to collect, normalize, and

transform efficiently data produced by orchestrated com-

ponents. These data are then used to generate different

views and help to solve telemetry use-cases, for example

specific metrics for elasticity trigger. The subsequent

modules (i.e., Alarm and Metric storage) will exploit

directly on top of these metrics.

Alarm: It enables the ability of triggering responsive

actions based on defined rules against samples or event

data collected by Metering module. This module consists

of two sub-modules: ‘‘Alarm Evaluator’’ and ‘‘Alarm

Notifier’’. The former evaluates measures in Metric Storage

module and decides whether they are over or under a given

threshold. The latter then triggers a notification and sends a

message to the Elasticity Controller of the Orchestrator,

who in turn will perform corresponding elastic actions,

such as scaling out/in or up/down.

Metric storage: Its goal is to mainly stores aggregated

measures of cluster nodes, such as system performance.

The metric is a collection of (timestamp, value) for a given

managed resource, which can be anything from the node’s

temperature to the CPU usage of a VM. This database also

stores events, that happen in Cloud infrastructure, for

example an API request has been received, a VM has been

started, an image has been uploaded, etc. Stored measures

are retrieved for monitoring, billing, or alarming, whereas

events are useful for auditing, performance analysis,

debugging, etc.

In addition, OpenStack supports some official services

for Telemetry module, including Ceilometer [37] for

Metering, Aodh [38] for Alarm, and Gnocchi [39] for

Metric Storage.

4.6 Messaging server

It is needed for communication between framework’s

modules based on exchanging messages. It creates con-

nected channels using favoured communicating protocols

such as AMQP, CoAP, or even MQTT. In OpenStack

cloud, internal communication among OpenStack services

may be conducted by RabbitMQ [40]. RabbitMQ is an

open-source message-oriented middleware supporting

popularly communicating protocols such as AMQP,

STOMP, and MQTT.

All modules of the framework are decoupling. It means

the startup order is not quite important. In spite of that, it

makes no sense for some modules to work independently,

thus requires the power-up of other ones as prerequisites.

Similarly, components and resources described and man-

aged by the Orchestrator should be initiated at any given

moment. The Orchestrator must have ability to resolve

dependencies between components and from there come up

with a deployment plan containing the appropriate order of

installment. From the system description to the deployment

plan, the Orchestrator may have to apply a chain of solvers

such as Learning Automata based allocator, Constraint

Programming based solvers, Heuristics based solvers, and

Meta-Solvers. When an event or combination of events and

conditions occurs at runtime, the Orchestrator generates the

corresponding elasticity plan and conducts the necessary

Cluster Computing

123

modifications to convert the current topology to the

expected one described in the elasticity plan. The modifi-

cations include actions following ECA (Event-Condition-

Action) rule such as resources’ scaling in/out or up/down

when measures of a resource trespass the given thresholds.

5 Multi-level just-enough elasticity

5.1 The method

We propose a method called just-enough elasticity and

apply it to the two-level elasticity system using Kubernetes

in the OpenStack cloud, specifically as follows.

Inner Level. The main virtualization resource of this

level is Kubernetes pod containing containers. Here, the

creation or retrieval of pods depends on the needs of the

application using HPA technique. To implement HPA

engineering, the Kubernetes cluster needs to have Metrics

Server installed. Metrics Server is a resource aggregator of

Kubernetes cluster. Metrics Server is not intended to be a

relay service, it is a source of metrics for system moni-

toring solutions. The primary function of Metrics Server is

to implement HPA and VPA.

Outer Level. The outside of pods are nodes where pods

are scheduled to initialize and operate. So, elasticity in the

outer level is the process of adding or revoking nodes

(essentially the node corresponds to an OpenStack server)

using Cluster Controller we have developed in Python

language1.

The just-enough elasticity method is implemented in

both outer and inner layers. In essence, the user needs to

define a resource area in advance and the increase or

decrease will be within the upper and lower limit of that

resource area. However, instead of dividing the resource

area into servers with identical configuration, the article

proposes how to divide that resource area into smaller and

more fine-grained pods. Assume that the resource area is

defined around 4 CPUs and 8 GB memory. Normally it can

be divided into 4 servers, each with 1 CPU and 2 GB

memory configuration, but we propose to divide it into 9

pods, each pod uses 0.44 CPU and 910 MB memory.

Applying the Kubernetes cluster scaling principle in con-

junction with HPA, this method will rely on the number of

pods unscheduled due to the fact that the cluster runs out of

resources to determine the configuration of the next node to

be added to the cluster. Figure 3 depicts the results of the

proposed method.

As assumed, a pod requires a resource amount of 0.44

CPU and 910 MB memory. If at the time the system

checks, it detects that 4 pods are unscheduled due to a lack

of resources, the system will immediately determine that at

least 1.76 CPUs and 3640 MB memory are required. From

determining the amount of resources needed, the system

will suggest a configuration for node which is about to be

created, it can be 2 CPUs and 3840 MB memory. CPU

value will be rounded up to the nearest integer and Memory

will be increased a bit more to make the server ‘‘more

spacious’’.

Instead of turning on 2 servers, each with 1 CPU and

2048 MB memory running out a total of 2 CPUs and 4096

MB memory, applying the just-enough method saves 256

MB memory. Along with that, the resource is optimized

when only having to run the operating system and other

services once, instead of twice on each server. In cases

where the amount of missing resources is too small, the

system will return a minimal configuration required by the

operating system for the new node to work.

5.2 Cluster controller

We have developed a Cluster Controller as a part of

Elasticity Controller in the proposed framework to coor-

dinate the scaling of the system at multiple levels. Basi-

cally, the Cluster Controller monitors the operation of the

Kubernetes cluster and then decides whether to create a

new node or remove an empty node from the cluster. To do

that, the Cluster Controller will have to work with both

OpenStack and Kubernetes through the APIs. We use the

OpenStack SDK library to interact primarily with the Open

Stack’s compute and network APIs. With Kubernetes, we

use the Kubernetes Python Client library and work directly

with the Kubernetes API through methods GET, POST,

PATCH, DELETE, etc. The Cluster Controller will work

as shown in the diagram in Fig. 4.

Diagram explanation:

Step 1. The Cluster Controller will periodically check

the system every 10 seconds to confirm if the pods are

pending or not.

Step 2. Having the pending pods is a condition that

determines whether a new node is needed. Since the pod is

not only in the pending state when not scheduled, the pod

can still be recorded in the pending status when switching

from one mode to another, for example from running to

terminating, at this step some conditions to select the right

pod must be handled. A pending pod due to unscheduled

must satisfy the following 3 conditions simultaneously:

The pod has a phase of ‘‘Pending’’, has been in pending

state for 20 seconds and has not been recorded start-up

time.

Step 3. When the cluster has pending pods and all nodes

are ready, this means that HPA has created more pods and

that the cluster’s resources are now insufficient. At this

point, the Cluster Controller will accrue the resource1 https://github.com/fimocode/cluster_controller.

Cluster Computing

123

https://github.com/fimocode/cluster_controller

requirements of the pending pods with the conditions as

mentioned in Step 2 to retrieve the total required resources

and specifically the CPU and Memory.

Step 4. In this step, the Cluster Controller will process

CPU and Memory values from Step 3. The CPU value will

be rounded up (e.g., I(0.3) = 1) because OpenStack only

receives the CPU as positive integers. Meanwhile, the

required Memory value will be considered along with the

operating system that will run on the new Node. Assuming

that a Node needs more than 400 MB of memory to run the

operating system and essential services when operating in

the Kubernetes cluster. So considering the total of memory

required and 500 MB, if the total is smaller than the

minimum value required by the operating system, the

memory value of the new node will be equal to that min-

imum value. If the total is greater, the Memory value of the

new node will be equal to the required Memory value plus

500 MB.

Step 5. At this step, the Cluster Controller will compare

the expected configuration of the new node with the rest of

the infrastructure resources. If the infrastructure has

enough resources, the Cluster Controller moves to Step 6 to

create a node. If the infrastructure no longer has enough

resources, the Cluster Controller will trigger a warning,

refuse to create a new Node, and go back to Step 1.

Step 6. To create a new OpenStack server, the Cluster

Controller will do the following:

– The Cluster Controller will generate 1 flavor based on

the CPU and Memory values calculated in Step 4 and

the values of root disk, ephemeral disk, swap disk,

rxtx_factor will be set by default. The values of private

network, key pair, image type will also be set with the

default value by the Cluster Controller.

Fig. 3 Newly created nodes

have configurations

corresponding to demands

Fig. 4 Workflow of Cluster Controller

Cluster Computing

123

– The server after being successfully initialed will run the

commands configured as user data, including installing

packages and performing some tasks.

– After the system reports that the server has been

successfully created, the Cluster Controller automati-

cally creates and attaches a floating IP to that server

from the pre-set provider network.

Step 7. When a new node is added to the cluster, it can be

in either states: ‘‘NotReady’’ and ‘‘Ready’’. A node is

considered ‘‘ready’’ i.e. when recognized by Master Node

as ‘‘Ready’’ state. After confirming that the newly added

Node is already in a ‘‘Ready’’ state, the Cluster Controller

will proceed to label it to clearly separate the functionality

of nodes in the Kubernetes cluster, for example ‘‘type:run-

app’’. On the application side, when deploying, a

‘‘nodeSelector’’ field is added to the user data so that

Kubernetes understands that the pods of this application

will only be run on nodes labeled as ‘‘type:run-app’’, for

instance.

Step 8. Waiting time is counted since the last node

created and recorded as ‘‘Ready’’. If the waiting time has

passed, it will go to the next step, if not, go back to Step 1.

Step 9. The operator will have to pre-identify the

namespace containing the running applications for the

Cluster Controller to check. A Worker Node is considered

empty if no pod belongs to one of the namespaces of the

application running on them. This process will repeat

continuously to give a list of empty Worker nodes.

Step 10. The process of removing a node involves

stopping scheduling a new pod on that node and removing

the running pods. In the case of an empty node, it is enough

to stop the schedule to isolate the node from the cluster.

Step 11. The Cluster Controller will send a request to the

Server API to delete a node after it has been quarantined

from the cluster.

Step 12. When deleting a server from OpenStack, the

Cluster Controller will send a request to the OpenStack

Compute API. The deletion process will include both the

deletion of the floating IP and flavor of that server.

Steps 10, 11, and 12 repeat until the list of empty

Worker nodes is empty. The MQTT cluster diagram

implemented with Kubernetes is illustrated in Fig. 5.

6 Validating experiments

In order to validate functionalities of our proposed frame-

work, we conducted the implementation mentioned in

Sect. 4 in our homegrown infrastructure at VNU Univer-

sity of Engineering and Technology, Hanoi (VNU-UET).

We also make some discussions after the results of the

experiments.

6.1 Experiments with VM-level elasticity

6.1.1 Experiment testbed

The testbed is composed of two main parts: one imple-

mentation of our elasticity framework, and one load

injector to simulate the MQTT clients and their workloads.

Test plans of various scenarios are created using built-in

functions of the load injector. The simulated publishers

generate MQTT messages and send them to the Load

Balancer (HAProxy). According to a specific scheduling

algorithm, the LB distributes these messages to one EMQX

broker of the cluster. The simulated subscribers also con-

nect to the LB which distributes connecting requests to one

member of the cluster. The result is MQTT subscriptions to

specific topics in the cluster. The routing of messages from

their sources to right destinations is conducted internally by

the cluster as mentioned in Sect. 4.

Apache JMeter [41] is used as the load injector in our

experiments. It is an open-source tool for load test and

performance evaluation. Multiple protocols such as HTTP,

HTTPS, SOAP, REST, FTP, JMS, etc. are supported by

JMeter. Other protocols can be included into JMeter using

plugins. To support the experimentation, a MQTT plugin

for JMeter implementing some features of MQTT version

5.0 [42] has been developed. To do stress test, distributed

testing paradigm with one JMeter master and a couple of

slaves is used to ensure that there is no side-effect to the

performance of simulated MQTT clients. In this experi-

ment, EMQX brokers and JMeter load injectors are

installed on VMs provisioned by the cloud. Each JMeter

instance has 8 vCPU and 8 GB memory and each EMQX

broker instance has 2 vCPU and 2 GB memory, all with

Ubuntu 18.04.

6.1.2 Experiment scenarios

We conducted experiments with multi-publisher and multi-

subscriber scenarios usually found in IoT applications

using MQTT. The experiments based on these scenarios

evaluate the effectiveness of proposed elasticity framework

with clustered-broker model.

Multi-publisher scenario: This scenario simulates

multiple IoT smart plugs sending data to multiple topics in

the brokers. A smart-home center subscribing these topics

has responsibility to process and analyze these data. We

create a topic scheme with 40 houses which each one

includes 90 smart plugs. In turn, each smart plug publishes

10 telemetry parameters. Therefore there are totally 3600

smart plugs playing the publisher roles in the scenario. The

testbed for this scenario is illustrated in Fig. 6a.

Cluster Computing

123

Multi-subscriber scenario: This scenario simulates the

smart-home center sending control commands, for instance

an indicator of an ON/OFF update, to multiple IoT smart

plugs. In this context, the center is the only publisher and

the smart plugs are the subscribers. Like the multi-pub-

lisher scenario, we also define a topic scheme representing

3600 smart plugs, but they play the subscriber roles in this

scenario. The testbed for this scenario is depicted in

Fig. 6b.

6.1.3 Results

The MQTT workloads are prepared using JMeter test plan.

The workload scheme starts with a short warm-up period

and then drastically increases when MQTT clients join

rapidly to the simulation and start to generate workload.

EMQX servers are preconfigured following suggestions

from EMQX documentation2. We chose IP multicast

method for the node-discovery and autocluster mecha-

nisms. The scheduling strategy for HAProxy was set to

balance.

The Ceilometer, Aodh, and Gnocchi services were

configured to measure and store measurements of average

%CPU usage and number of virtual CPUs (vCPU) metrics.

Upper and lower thresholds for average CPU usage are set

to 80% and 25% respectively. It means that if average

%CPU usage of clustered brokers breaks these thresholds

and the events caught by Ceilometer and Aodh, a notifi-

cation is sent to Heat service for conducting a

Fig. 5 An implementation of

the framework with Kubernetes

2 https://www.emqx.io/docs/en/v3.0/tune.html.

Cluster Computing

123

https://www.emqx.io/docs/en/v3.0/tune.html

corresponding elasticity action such as scaling in or out.

Actually, Heat has to ask other OpenStack services such as

Nova, Keystone, and Glance to get the elasticity actions

done synchronously. Elasticity plan configured in Heat

ensures the number of VMs always in range of 1 to 6.

Two JMeter client machines are used for distributed

tests. In each client machine, maximum of 5 JVM pro-

cesses are allowed to initiated. According to the test sce-

narios, each process is responsible for running 3600 MQTT

clients. Therefore, two client machines can start and run

maximum 36000 MQTT clients. To increase saturated

probability of the brokers, QoS level of publishing and

subscribing MQTT messages is fixed to 2 and ‘‘clean ses-

sion’’ flag is set to FALSE in all experiments.

Multi-publisher scenario The multi-publisher scenario

is tested with a cluster including one initial broker B0 and

other brokers who will be added dynamically when needed.

In Fig. 7a, we see an elasticity effort to mitigate the pres-

sure performed by our system. A group of two MQTT

brokers is added to share the workload. These brokers

automatically joins the cluster created beforehand by B0

using the multicast method. The change in the topology is

announced to HAProxy for reloading its configuration. The

reloading process needs to be used instead of restarting one

in order to lower the server downtime as much as possible.

After reloading, HAProxy recognizes the new servers and

distributes messages to all load-balancing members. At the

end, average %CPU usage of the clustered brokers reduces

under the lower threshold in a period of time. Thus, we see

another elasticity action (scale in) at this time of the sim-

ulation when MQTT clients are terminated or finished. At

this point when the average CPU usage goes under 25%,

number of broker VMs is decreased gradually to one for

minimizing operating cost.

Multi-subscriber scenario The multi-subscriber sce-

nario is tested with a cluster which is similar to the multi-

publisher one. We also see the same elastic behaviours

shown in Fig. 7b like in the case of multiple publishers.

The scaling out actions with two groups of two brokers are

triggered at the time later than the multi-publisher scenario.

These two group of brokers are added sequentially by Heat.

One gap of one minute is set between group additions to

avoid elastic oscillation. The average %CPU utilization

stays above the upper threshold during the time longer than

in the multi-publisher scenario. The reason is that the

combination of QoS level set to 2 and ‘‘clean session’’ flag

set to FALSE keeps retained messages at the brokers

longer, thus the more the subscribers are, the busier the

brokers are.

6.2 Experiments with multi-level elasticity

6.2.1 Experiment setup

In this part, we reuse the two scenarios discussed in Sect.

6.1.2: multi-publisher and multi-subscriber. Additionally,

we describe another scenario used specifically for the

experiment to evaluate multi-level just-enough elasticity

method. MQTT workload also is composed and injected by

the Apache JMeter plugin mentioned in Sect. 6.1.1. This

time, the injector is installed on a OpenStack VM with the

following configuration: 4 vCPUs, 4 GB memory, OS

Ubuntu 18.04. Kubernetes cluster contains at least one

Master node (VM, 2 vCPUs and 3 GB memory) and one

Worker node (VM, 1 vCPU and 1 GB memory). Number of

Worker nodes can be changed while the system is scaling.

Each cluster node can host one or many Kubernetes pods.

Each pod requires 0.1 CPU and 120 MB memory and

contains one and only one container. This container pro-

vides runtime environment for one EMQX broker service

and only hosts and exposes this service. MQTT QoS of

both publishers and subscribers are set to 1. The lower and

upper thresholds of average CPU usage are 10% and 90%,

respectively. We use Prometheus [43] and Grafana [44] to

monitor the Kubernetes system in real time. More details

on the experiment’s implementation is depicted in Fig. 5.

B0
SmartHouse1

SmartPlug1

B1

SmartPlug2

MQTT MQTT

HAProxy Load Balancer

Distributed JMeter Load Injectors
IoT Smart Plugs

MQTT Publishers
Smart-Home Center
MQTT Subscribers

SmartHouse1/#SmartHouse1/SmartPlug1
/Parameter1

SmartHouse1/SmartPlug2/
Parameter1

(a) Multi-Publisher Scenario

B0
SmartHouse1

SmartPlug1

B1

SmartPlug2

MQTT MQTT

HAProxy Load Balancer

Distributed JMeter Load Injectors
IoT Smart Plugs

MQTT Subscribers
Final Users

MQTT Publishers

SmartHouse1/Smart
Plug1/Command

SmartHouse1/SmartPlug2/Command
SmartHouse1/SmartPlug1/Command

SmartHouse1/Smart
Plug2/Command

(b) Multi-Subscriber Scenario

Fig. 6 Testbed of VM-level elasticity experiments with clustered

brokers

Cluster Computing

123

6.2.2 Multi-publisher scenario

In this scenario, there is only one Worker node, called wn1

for short, at the very beginning of the experiment. Elas-

ticity activities of the Kubernetes pods and Worker nodes

are summarized in Fig. 8. In the figure we see that there is

only one pod running on the Worker node wn1 in the initial

phase of the experiment (up to the second minute) and

average CPU usage of all brokers is about 13%. From the

3rd to 6th minute, the system triggers multiple scaling-out

actions at the container level and the number of pods

reaches 5 ones running all together. Some other pods are in

the pending state since wn1 does not have enough CPU

resource. It means they must wait until supplemental

resources are added. The workload is still high, therefore

average CPU usage at this time is about 91%.

Around the 10th minute, another Worker node wn2 with

the same configuration is added and ready. Since then, the

pending and new coming pods can be scheduled on the new

node. From the 18th to 25th minute, the entire system with 7

pods runs stably which average CPU usage is about 64%.

After the 25th minute, the injector stops publishing and

subscribing MQTT messages. When average CPU usage is

less than 10% around the 30th minute, the scale-in actions

are triggered and the idle pods are removed gradually by

Kubernetes. Since there is no pod in Worker node wn2 any

more, this node is also released by OpenStack. Around the

35th minute, there is only one pod and one Worker node

wn1 on all over the system.

We see that 7 pods are provisioned and released corre-

sponding to Initial, Scale-out, Balanced, Scale-in phases of

the elasticity system, thereby showing that our implemen-

tation has been working effectively.

6.2.3 Multi-subscriber scenario

In this scenario, there is also one Worker node wn1, at the

very beginning of the experiment. Elasticity activities of

the Kubernetes pods and Worker nodes are summarized in

Fig. 9. In the figure we see that there is only one pod

running on the Worker node wn1 in the initial phase of the

experiment (up to the third minute) and average CPU usage

of all brokers is about 13%. Other events and activities of

this experiment are similar to the multi-publisher one

except that the multi-subscriber scenario needs more pods

to keep the IoT application working correctly. We also see

that 9 pods are provisioned and released corresponding to

Initial, Scale-out, Balanced, Scale-in phases of the elas-

ticity system, thereby showing that our implementation has

been working effectively.

6.2.4 Multi-level just-enough elasticity

Just-enough elasticity method will work effectively when

there are many pending pods at the same moment in the

system. To simulate such the scenario with the same

experiment setup, we decrease the upper threshold of

average CPU usage from 90% to 30%. Each pod requires

0.1 CPU and 280 MB memory. The amount of memory for

a new Worker node created by a scaling decision is cal-

culated by applying Formula 1. Other setup is the same

with the scenario in Sect. 6.2.2.

Similar to other scenarios, there is also one Worker node

wn1, at the very beginning of the experiment. Elasticity

activities of the Kubernetes pods and Worker nodes (ac-

cording to amount of memory provisioned) are summa-

rized in Fig. 10. In the figure we see that there is only one

pod running on the worker node wn1 in the initial phase of

the experiment (up to the second minute) and average CPU

usage of all brokers is about 12%. Soon after that, the

system triggers one scaling-out action at the container level

and the number of pods reaches 2 ones running all together.

Besides, two pods are in the pending state since wn1 does

not have enough CPU resource. It means they must wait

until supplemental resources are added. The workload is

(a) Multi-Publisher Scenario

(b) Multi-Subscriber Scenario

Fig. 7 With VM-level elasticity: average %CPU usage of clustered

brokers

Cluster Computing

123

still high, therefore average CPU usage at this time is about

84%. Since there are two pending pods, one more Worker

node with minimal configuration (wn2, 1 vCPU and 1024

MB memory) is added to the system around the 7th minute.

The new Worker one is ready at the 8th minute and the two

pending pods are scheduled to run on the wn2.

At the next check, 4 pods are in the pending state, thus

one more Worker node (wn3, 1 vCPU and 1340 MB

memory) is created and ready around the 12th minute.

Since then the pending and new coming pods can be

scheduled and run on the wn3. Again at the next check, the

system recognizes that there are 6 pending pods, therefore

one more Worker node (wn4, 1 vCPU and 1900 MB

memory) is created and ready around the 18th minute.

Hence the pending and new coming pods can be scheduled

and run on the wn4. Around the 19th minute, the injector

stops publishing and subscribing MQTT messages.

Thereafter the system starts to trigger some scale-in actions

and we see that there are 5 pods running with 10% CPU

usage in average around the 26th minute. Eleven minutes

later, there is only one pod and one Worker node on all

over the system.

Fig. 8 Elasticity activities on

the Pods and worker nodes -

Multi-Publisher scenario

Fig. 9 Elasticity activities on

the Pods and worker nodes -

Multi-Subscriber scenario

Cluster Computing

123

Briefly, when number of pods increases very fast like in

this scenario, multi-level just-enough elasticity method

gives advantages in saving memory over creating individ-

ual Worker node with minimal configuration. This strategy

is effective when the deployed application consumes a lot

of memory and the elastic range is far from the limit of the

originally established resource area.

7 Conclusion

This article presents a flexible framework enabling multi-

level just-enough elasticity for MQTT brokers in IoT

applications. Our framework delivers elasticity through the

use of existing off-the-shelf components already in cloud

ecosystems. At VM level, our elastic MQTT broker service

has been successfully deployed using EMQX as MQTT

broker solution and OpenStack as cloud environment. At

container level, just-enough elasticity has been earned

thanks to the implementation of Kubernetes cluster and

EMQX brokers. Multiple comprehensive experiments are

conducted by generating traffics to the service at various

load levels to observe changes in number of broker

instances at multiple levels. Our experiment results show

that our elasticity MQTT broker service adapts well to user

load changes, making the service fully accommodate

incoming traffics as well as keep operating cost low. In the

future, we could investigate our approach from an energy

efficiency perspective and extend the experiments with

large data sets and more scenarios to enhance the results

used for evaluation. Furthermore, we also plan to develop a

three-level scaling algorithm with software scaling inside

the container to further increase resource efficiency.

Author contributions All authors contributed to the study conception

and design. Material preparation, data collection and analysis were

performed by LMP, N-T-TL and X-TN. The first draft of the manu-

script was written by LMP and all authors commented on previous

versions of the manuscript. All authors read and approved the final

manuscript.

Funding The authors declare that no funds, grants, or other support

were received during the preparation of this manuscript.

Data availibility The data used to support the findings of this study are

available from the corresponding author upon request.

Declarations

Conflict of interest The authors have no relevant financial or non-

financial interests to disclose.

References

1. Sharma, N., Panwar, D.: Green IoT: Advancements and Sus-

tainability with Environment by 2050. In: 8th International

Conference on Reliability, Infocom Technologies and Opti-

mization (Trends and Future Directions) (ICRITO), Noida, India,

pp. 1127–1132 (2020)

2. Turner, V., Reinsel, D., Gantz, J.F., Minton, S.: The Digital

Universe of Opportunities: Rich Data and the Increasing Value of

the Internet of Things. IDC Report (2014)

3. Message Queuing Telemetry Transport. http://mqtt.org. Accessed

30 April 2021

4. Mell, P., Grance, T.: The NIST definition of cloud computing. In:

NIST special publication, vol. 800, pp. 145 (2011)

5. Eugster, P.Th., Felber, P.A., Guerraoui, R., Kermarrec, A.: The

many faces of publish/subscribe. In: ACM Computing. Survey.

35, 2, 114-131 (2003)

Fig. 10 Elasticity activities of

the Pods and worker nodes in

Just-enough scenario

Cluster Computing

123

http://mqtt.org

6. EMQX Broker. https://docs.emqx.io/broker/latest/en/. Accessed

30 April 2021

7. Kawaguchi, R., Bandai, M.: Edge Based MQTT Broker Archi-

tecture for Geographical IoT Applications. In: International

Conference on Information Networking (ICOIN), Barcelona,

Spain, pp. 232-235 (2020)

8. Gupta, V., Khera, S., Turk, N.: MQTT protocol employing IOT

based home safety system with ABE encryption. In: Multimedia

Tools and Applications (2020)

9. Mukambikeshwari, A. Poojary: Smart Watering System Using

MQTT Protocol in IoT. In: Advances in Artificial Intelligence

and Data Engineering. Advances in Intelligent Systems and

Computing, Vol. 1133. Springer, Singapore (2020)

10. See, Y.C., Ho, E.X.: IoT-Based Fire Safety System Using MQTT

Communication Protocol. In: IJIE, Vol. 12(6), pp. 207–215

(2020)

11. Nazir, S., Kaleem, M.: Reliable Image Notifications for Smart

Home Security with MQTT. In: International Conference on

Information Science and Communication Technology (ICISCT),

Karachi, Pakistan, pp. 1–5 (2019)

12. Alqinsi, P., Edward, I.J.M., Ismail, N., Darmalaksana, W.: IoT-

Based UPS Monitoring System Using MQTT Protocols. In: 4th

International Conference on Wireless and Telematics (ICWT),

Nusa Dua, pp. 1–5 (2018)

13. Comparison of MQTT Brokers. https://tewarid.github.io/2019/

03/21/comparison-of-mqtt-brokers.html. Accessed 30 April 2021

14. Schmitt, A., Carlier, F., Renault, V.: Data Exchange with the

MQTT Protocol: Dynamic Bridge Approach. In: IEEE 89th

Vehicular Technology Conference (VTC2019-Spring), Kuala

Lumpur, Malaysia, pp. 1–5 (2019)

15. Zambrano A.M.V., Zambrano M.V., Mejı́a, E.L.O., Calderón

X.H.: SIGPRO: A Real-Time Progressive Notification System

Using MQTT Bridges and Topic Hierarchy for Rapid Location of

Missing Persons. In: IEEE Access, Vol. 8, pp. 149190–149198

(2020)

16. The features that various MQTT servers (brokers) support.

https://github.com/mqtt/mqtt.github.io/wiki/server-support.

Accessed 30 April 2021

17. Jutadhamakorn, P., Pillavas, T., Visoottiviseth, V., Takano, R.,

Haga, J., Kobayashi, D.: A scalable and low-cost MQTT broker

clustering system. In: 2nd International Conference on Informa-

tion Technology (INCIT), Nakhonpathom, pp. 1-5 (2017)

18. Thean, Z. Y., Voon Yap, V., Teh, P. C.: Container-based MQTT

Broker Cluster for Edge Computing. In: 4th International Con-

ference and Workshops on Recent Advances and Innovations in

Engineering (ICRAIE), Kedah, Malaysia, pp. 1–6 (2019)

19. Detti, A., Funari, L., Blefari-Melazzi, N.: Sub-linear scalability of

MQTT clusters in topic-based publish-subscribe applications.

IEEE Trans. Network Serv. Manag. 17(3), 1954–1968 (2020)

20. Ullah, A., Li, J., Hussain, A.: Design and evaluation of a bio-

logically-inspired cloud elasticity framework. Clust. Comput.

23(4), 3095–3117 (2020)

21. Righi, R.R., Correa, E., Gomes, M.M., Costa, C.A.: Enhancing

performance of IoT applications with load prediction and cloud

elasticity. Future Gener. Comput. Syst. 109, 689–701 (2020)

22. Fourati, M. H., Marzouk, S., Drira, K., Jmaiel, M.: DOCK-

ERANALYZER : Towards Fine Grained Resource Elasticity for

Microservices-Based Applications Deployed with Docker. In:

20th International Conference on Parallel and Distributed Com-

puting, Applications and Technologies (PDCAT), Gold Coast,

Australia, pp. 220–225 (2019)

23. Nardelli, M., Cardellini, V., Casalicchio, E.: Multi-Level Elastic

Deployment of Containerized Applications in Geo-Distributed

Environments. In: IEEE 6th International Conference on Future

Internet of Things and Cloud (FiCloud), Barcelona, pp. 1–8

(2018)

24. Rodrigues, V.F., Wendt, I.G., Righi, R.R., Costa, C.A., Barbosa,

J.L.V., Alberti, A.M.: Brokel: Towards enabling multi-level

cloud elasticity on publish/subscribe brokers. Int. J. Distrib. Sens.

Networks (2017). https://doi.org/10.1177/1550147717728863

25. Vavassori, S., Soriano, J., Fernández, R.: Enabling large-scale

IoT-based services through elastic publish/subscribe. Sensors 17,
2148 (2017)

26. Yadav, M.P., Yadav, D.K.: Maintaining container sustainability

through machine learning. Clust. Comput. 24(4), 3725–3750

(2021)

27. Dawoud W., Takouna I., Meinel C.: Elastic Virtual Machine for

Fine-Grained Cloud Resource Provisioning. In: Krishna P.V.,

Babu M.R., Ariwa E. (eds) Global Trends in Computing and

Communication Systems. ObCom 2011. Communications in

Computer and Information Science, vol 269. Springer, Berlin

(2012)

28. Nardelli M., Russo Russo G., Cardellini V., Lo Presti F.: A multi-

level elasticity framework for distributed data stream processing.

In: Mencagli, G., et al. (Eds.), Euro-Par 2018: Parallel Processing

Workshops. Euro-Par 2018. Lecture Notes in Computer Science,

Vol. 11339. Springer, Cham (2019)

29. Russo Russo, G., Nardelli, M., Cardellini, V., Lo Presti, F.: Multi-

level elasticity for wide-area data streaming systems: a rein-

forcement learning approach. Algorithms 11(9), 134 (2018)

30. Linh Manh Pham, Truong-Thang Nguyen, Tien-Quang Hoang,

‘‘Towards an Elastic Fog-Computing Framework for IoT Big

Data Analytics Applications’’, Wireless Communications and

Mobile Computing, vol. 2021, Article ID 3833644, 16 pages,

2021

31. Roure, D., Goble, C.: Software design for empowering scientists.

IEEE Softw. 26(01), 88–95 (2009)
32. A distributed, reliable key-value store. https://etcd.io/docs/v3.4.0/

. Accessed 30 April 2021

33. Kubernetes. https://kubernetes.io/. Accessed 30 April 2021

34. HAProxy. https://www.haproxy.com/solutions/load-balancing/.

Accessed 30 April 2021

35. OpenStack: Open Source Cloud Computing Infrastructure.

https://www.openstack.org/. Accessed 30 April 2021

36. OpenStack Heat. https://docs.openstack.org/heat/latest/. Accessed

30 April 2021

37. OpenStack Ceilometer. https://docs.openstack.org/ceilo-meter/

latest/. Accessed 30 April 2021

38. OpenStack Aodh. https://docs.openstack.org/aodh/latest/. Acces-

sed 30 April 2021

39. Gnocchi - Metric as a Service. https://gnocchi.xyz/. Accessed 30

April 2021

40. RabbitMQ. https://www.rabbitmq.com/. Accessed 30 April 2021

41. Apache Jmeter. https://jmeter.apache.org/. Accessed 30 April

2021

42. Pham, L.M., Nguyen, T.T., Tran, M.D.: A benchmarking tool for

elastic MQTT brokers in IoT applications. Int. J. Inf. Commun.

Sci. 4(4), 59–67 (2019)

43. Prometheus. https://prometheus.io/. Accessed 30 April 2021

44. Grafana. https://grafana.com/. Accessed 30 April 2021

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Cluster Computing

123

https://docs.emqx.io/broker/latest/en/
https://tewarid.github.io/2019/03/21/comparison-of-mqtt-brokers.html
https://tewarid.github.io/2019/03/21/comparison-of-mqtt-brokers.html
https://github.com/mqtt/mqtt.github.io/wiki/server-support
https://doi.org/10.1177/1550147717728863
https://etcd.io/docs/v3.4.0/
https://kubernetes.io/
https://www.haproxy.com/solutions/load-balancing/
https://www.openstack.org/
https://docs.openstack.org/heat/latest/
https://docs.openstack.org/ceilo-meter/latest/
https://docs.openstack.org/ceilo-meter/latest/
https://docs.openstack.org/aodh/latest/
https://gnocchi.xyz/
https://www.rabbitmq.com/
https://jmeter.apache.org/
https://prometheus.io/
https://grafana.com/

Linh Manh Pham is a lecturer at

University of Engineering and

Technology,Vietnam National

University, Hanoi (VNU-UET).

He was a postdoctoralresearcher

at Inria, France. He earned an

MSc. in Computer Science in

theUSA and a Ph.D. in Cloud

Computing at Grenoble Alpes

University, France. Hisarea of

research is Cloud/Fog Comput-

ing, and he intends to highlight

thebenefits of this relatively

novel field of research.

Nguyen-Tuan-Thanh Le is with

Thuyloi University, Hanoi as a

lecturer. He hasa Master degree

in Software Engineering at

University of Engineering

andTechnology, Vietnam

National University, Hanoi

(VNU-UET). He earned a

Ph.D.in Computer Science at

Paul Sabatier University, Tou-

louse, France.

Xuan-Truong Nguyen is with

Hanoi Pedagogical University 2

as a lecturer. He is also a

researcher of Center of Mul-

tidisciplinary Integrated Tech-

nologies for Field Monitoring,

University of Engineering and

Technology, Vietnam National

University, Hanoi (VNU-UET).

He has a Master degree in

Software Engineering and cur-

rently a Ph.D. candidate at

VNU-UET.

Cluster Computing

123

	Multi-level just-enough elasticity for MQTT brokers of Internet of Things applications
	Abstract
	Introduction
	Preliminary of MQTT
	MQTT
	Distributed MQTT Brokers

	Related work
	Elastic MQTT broker
	Multi-level elasticity for MQTT broker

	Proposed elastic MQTT framework
	MQTT broker cluster
	Load balancer
	Cloud infrastructure
	Orchestrator
	Telemetry
	Messaging server

	Multi-level just-enough elasticity
	The method
	Cluster controller

	Validating experiments
	Experiments with VM-level elasticity
	Experiment testbed
	Experiment scenarios
	Results

	Experiments with multi-level elasticity
	Experiment setup
	Multi-publisher scenario
	Multi-subscriber scenario
	Multi-level just-enough elasticity

	Conclusion
	Author contributions
	Data availibility
	References

