Le, Quoc Anh and Pham, Xuan Loc and Luu, Manh Ha
(2021)
Đánh Giá Hiệu Năng Một Số Kỹ Thuật Học Sâu Cho Phân Vùng Mạch Máu Gan Trong Ảnh Chụp Cắt Lớp Vi Tính.
In: Hội nghị Quốc gia lần thứ XXIV về Điện tử, Truyền thông và Công nghệ thông tin REV-ECIT 2021, Hanoi.
Abstract
Phân vùng mạch máu gan trong ảnh chụp cắt lớp vi tính (CLVT) là bước quan trọng đối với việc chẩn đoán và lập kế hoạch điều trị các bệnh lý liên quan tới gan. Mạch máu gan có cấu trúc phức tạp, độ tương phản thấp, ảnh hưởng bởi nhiễu, do đó đã đặt ra nhiều thách thức cho việc phân vùng chính xác mạch máu gan. Trong lĩnh vực xử lý ảnh y tế, kỹ thuật học sâu đã cho thấy sự phát triển nhanh chóng. Gần đây, mạng nơ-ron Transformer được áp dụng và cho kết quả khả quan trong lĩnh vực xử lý ảnh y tế. Trong bài báo này, chúng tôi đánh giá hiệu năng phân vùng mạch máu gan giữa kỹ thuật học sâu dựa trên mạng nơ-ron tích chập (3D-ResUNet, 2D/3D nn-UNet) và kỹ thuật học sâu sử dụng mạng nơ-ron Transformer (TransUNet, Swin-UNet, MedT). Dữ liệu ảnh chụp CLVT sử dụng để huấn luyện và đánh giá được thu thập từ nhiều cơ sở y tế trên thế giới bao gồm ảnh chụp CLVT sử dụng bức xạ liều thông thường và liều thấp. Kết quả cho thấy 3D nn-UNet có độ chính xác (ACC) trung bình cao nhất, 98\%; ba kỹ thuật học sâu 2D/3D nn-UNet và TransUNet đều đạt trung bình giá trị chỉ số đánh giá DSC lớn hơn 75\%. Trong kỹ thuật điều trị đốt sóng cao tần (RFA) mạch máu gan lớn là vùng được quan tâm, cả ba kỹ thuật học sâu nêu ở trên đều cho chỉ số đánh giá trung bình DSC ở vùng mạch máu lớn lớn hơn 80\%. Kết quả của nghiên cứu cho thấy rằng 3D nn-UNet có thể tự động phân vùng mạch máu gan với độ chính xác cao, cho thấy tiềm năng ứng dụng vào quá trình lập kế hoạch can thiệp điều trị ung thư gan bằng kỹ thuật RFA.
Actions (login required)
|
View Item |