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Abstract—Smoothing filters are widely used in EEG signal
processing for noise removal while preserving important features.
Unlike common approaches in the time domain, a recent effective
algorithm using the Upscale and Downscale Representation
(UDR) technique has been introduced to process the signal in
the image domain. The idea of UDR is to visualize the input
with an appropriate line width, convert it to a binary image,
and then smooth it by skeletonizing the signal object to a unit
width and projecting it back to the time domain. We propose
in this paper a cascaded UDR (CUDR) where the interested
signal is filtered twice. CUDR’s performance is verified on
simulated data with added white Gaussian noise and compared
with the cascaded arrangement of some conventional techniques.
Experimental results have demonstrated the outperformance of
CUDR in terms of the fitting error when dealing with noisy
signals, especially at a low signal-to-noise ratio.

Index Terms—Smoothing, thinning, skeletonization, electroen-
cephalogram (EEG), signal processing, time-series, noise, filter

I. INTRODUCTION

Electroencephalogram (EEG) is widely used for clinical
diagnosis and monitoring to detect brain disorders [1], [2]
as well as in Brain-Computer Interface (BCI) applications
[3], [4]. One of common practices in EEG signal processing
for specific pattern detection is via the visual inspection
and interpretation of neurologists [5]. Therefore, the higher
the EEG signal quality, the more promising results can be
expected. Hence, EEG signal noise reduction becomes a vital
aspect of EEG signal processing.

Many fields of engineering and science can benefit from
the use of smoothing filters [6] [7], including computer vision
[8], signal processing [9], and time series analysis [6], [10]–
[13]. EEG signal processing is no exception when various
smoothing filters have been developed for noise reduction.
Some conventional filters applied to EEG signal smoothing are
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Moving Average, Savitzky-Golay [14], and Binomial Filter.
Unlike these algorithms that filter out the signal in the time
domain, a recent effective approach in the image domain,
UDR, has been proposed [21]. The concept behind UDR is to
visualize the input signal at a suitable line width and convert it
to a binary image. After that, the signal object is skeletonized
to a unit width and projected back into the time domain.
The quantitative results in [21] have shown the promising
capability of UDR on noise removal in EEG signals.

It has been pointed out in [15] that a successive two-
stage filter can significantly increase the smoothing results. In
fact, cascade arrangements of conventional filters have been
implemented widely to increase the filter effectiveness. For
instance, a four-stage cascaded Savitzky-Golay filter is devel-
oped in [16] to eliminate noises like powerline interference
(PLI) from the ECG signals. The two-layered hierarchical
cascaded Moving Average filter is utilized to evaluate and
remove the baseline wander from the raw vibro-arthrography
(VAG) signal [17]. An adaptive filter model with a cascaded
structure is presented in [18] for noise reduction in speech
signals of Parkinson’s disease (PD) patients. In EEG signal
processing, a cascaded Savitzky-Golay is introduced in [15] to
improve the noise removal ability of the Savitzky-Golay filter
in EEG signals. In this paper, a cascaded UDR is developed to
evaluate the enhancement of UDR when applying the cascaded
arrangement.

The rest of the paper is structured as follows. The overview
of the smoothing algorithm using Upscale and Downscale
Representation (UDR) and the idea of cascaded UDR (CUDR)
are described in Section II. The employed data and evaluation
metrics are declared in Section III. Results of the extended
UDR and some comparative smoothing filters are reported
in Section IV. Finally, the discussion and conclusion are
presented in Sections V and VI.



II. METHODOLOGY

A. Overview on Smoothing Algorithm Using Upscale and
Downscale Representation (UDR)

The idea of upscaling in UDR is inspired by the ”zoom
in” process when neurologists visually inspect signals for
peak labeling on EEG peak detection in cognitive conflict
processing [19], [20]. Let X be the signal to be processed, W ,
and TW correspondingly be the line width of plotted signal,
the line width threshold value, respectively. The noisy signal
is first graphically visualized with the initial line width W in
a figure. Then, the figure is converted into a binary image. A
unit-width curve representing the signal is generated from the
binary image by applying a thinning algorithm. Finally, the
skeletonized curve is projected back to the time domain. As
reported in [21], UDR outperforms other conventional filters
in the task of removing noise from simulated data. Besides,
the experiment on a real EEG dataset also shows promising
results in a signal classification task. The pseudocode of UDR
is presented in Algorithm 1.

A disadvantage of UDR is its human intervention
dependence. Indeed, the line width W must be adjusted while
performing UDR until the correlation is maximum. With
different signal durations, UDR requires a parameter set that
generates the best-smoothed signal. As per our observation,
UDR using a low line width can result in a waveform similar
to the original signal with some unwanted noise. Although
using a thicker line width can return a smoother skeleton,
the waveform of which is flatter where some peaks are not
preserved. Therefore, a cascaded UDR is proposed where
a low W is implemented in the initial stage for waveform
perseverance and a high W is employed in the second stage
for signal smoothing. The idea is presented in Section II.B
and verified in Section IV.

Algorithm 1 UDR
Input: X,W, TW

Output: Y
while W ≤ TW do

F ← Plot X at W
B ← convert F to binary image
Skel ← skeletonize B
Y ← project Skel back to time domain
W ← adjust W

end while

B. Cascaded Smoothing Algorithm Using Upscale and Down-
scale Representation

The two-stage or cascaded Savitzky-Golay smoothing fil-
ter (CSG) for biomedical signal processing is introduced in
[15] to reduce signal distortion. As reported in [15], CSG
worked better in signal denoising compared to other filters:
Cascaded Moving Average (CMA), Cascaded Savitzky-Golay
with Moving Average (CSGMA), Cascaded Savitzky-Golay
with Binomial filter (CSGB) and single-stage Savitzky-Golay
(SG), even in very noisy level (SNR = -5dB). Inspired by

(a) Original signal

(b) UDR (W = 5)

(c) UDR (W = 30)

(d) CUDR (W1 = 10 and W2 = 25)

Fig. 1: Skeletonization on a signal using UDR and CUDR:
white area is the plotted signal, red line is the generated

skeleton

the ideas in [15] and [21], a cascaded arrangement of UDR
is developed in this work to verify its performance in signal
smoothing. Here, the input signal is filtered by going through
successive UDRs using different line width values at each
stage.

In UDR, the skeleton generated from the binary image is
impacted by the level of the signal noise. Fig.1a illustrates
the binary image of an extremely noisy signal epoch. Fig.
1b illustrates the binary image of UDR skeletonization in the
noisy signal epoch, the skeleton of which consists of unwanted
branches. This branch issue can be removed by using an
appropriate thinning threshold, or increasing the line width
W . Both approaches require human intervention and limit the
automation of the algorithm, yet to mention the additional
computational burden. Fig.1c illustrates the effectiveness of
UDR at a higher value of W , although the processing time
is also increased in this case. Here, a cascade arrangement of
UDR is proposed where the input signal is processed through
two successive stages with different line width values W . The
input signal is first represented at a lower W and smoothed
in the former, the result of which is then represented at a
higher W and smoothed in the latter. Fig.1d illustrates the
result of the proposed CUDR where the line width values are
correspondingly selected as 10 and 25 at the first and second
stages. It can be seen that the waveform is well preserved
while the line width is not required to go up to 30 as shown
in Fig.1c to reach a desired performance.



III. DATA AND EVALUATION METRICS

A. Data

Let PX , PS be respectively the power of an input signal X
and the white Gaussian noise n, by which X is distorted with.
The signal-to-noise ratio (SNR) is defined as

SNR =
PX

Pn
. (1)

In this work, a multi-component signal dataset is generated to
evaluate the enhancement of the proposed algorithm compared
to the original UDR. Each component is defined as

S(t) = X(t) + n(t), (2)

where n(t) is white Gaussian noise at SNR of -10, -5, -1, 1, 5,
and 10 dB, and X(t) is the synthetic signal as introduced in
[22]. There are seven signal components which are described
as follows:

component 1:

X1(t) = 0.5 cos(πt) + 1.5 cos(4πt) + 4 cos(5πt), (3)

component 2:

X2(t) = 0.7 cos(πt) + 2.1 cos(4πt) + 5.6 cos(5πt), (4)

component 3:

X3(t) = 1.5 cos(2πt) + 4 cos(8πt), (5)

component 4:

X4(t) = 1.5 cos(πt) + 4 cos(4πt), (6)

component 5:

X5(t) = 0.5 cos(πt)+1.5 cos(2πt)+0.8 cos(3πt)+3.5 cos(5πt),
(7)

component 6:

X6(t) = 4.5 cos(3πt) + 2.2 cos(5πt), (8)

component 7:

X7(t) = 0.8 cos(πt) + cos(3πt) + 3 cos(5πt). (9)

Then, these signal components are concatenated in random
orders and duration from 2.75 to 4 s. In this work, 5040
concatenated signals were generated as permutations without
repetitions of seven aforementioned components and employed
as the evaluation dataset. In reality, an EEG signal also has
different waveforms at different amplitudes and frequencies.
Hence, this arrangement is to ensure the perseverance of the
vital characteristics of the real-EEG signal [15].

TABLE I: COMPARATIVE FILTERS

Filters Order Span/
Binomial coeficients

Bionomial Filter (BF) [15] N/A 21
Savitzky-Golay (SG) [15] 8 21

Moving average (MA) [15] N/A 21
Cascaded Filters Stage 1 Stage 2

SG-BF [15] SG BF
CSG [15] SG SG

SG-MA [15] SG MA
CMA [15] MA MA

UDR Filters W1 W2
UDR 10 N/A

CUDR 10 25

B. Evaluation Metrics

Let Y be the smoothed signal, the Root Mean Square Error
(RMSE) and the Correlation Coefficient (COR) evaluating the
correlation between the input and the output are defined as

RMSE =

√∑N
k=1(Xk − Yk)

2

N
, (10)

COR =
1

N − 1

N∑
k=1

(
Xk − µX

σX
)(
Yk − µY

σY
), (11)

where µ and σ are the mean and standard deviation of
the signal, N is the number of data points in the observed
interval.

For each concatenated signal X(t), a noisy signal, called
S(t), is randomly generated by adding n(t) to X(t). The
RMSE and COR between the input X(t) and the smoothed
signal Y (t) are calculated to evaluate the effectiveness of
the proposed approach compared to other techniques. The
lower the RMSE and/or the higher the COR, the better the
performance of the smoothing filter, and vice versa.

IV. RESULTS

1) Comparative Algorithms: Table I shows the comparative
filters used in this work for evaluation of the performance
of CUDR on the test dataset. There are nine smoothing
filters: four single-stage and five cascaded ones, which are
recommended in [15].

2) Results on Simulated Data: The average results of
non-cascaded comparative algorithms and CUDR on the test
dataset are reported in Table II, which has confirmed not only
the notable performance of UDR compared to other single-
stage filters but also the significant enhancement compared to
UDR.

As reported in Table II, if disregarding CUDR, UDR returns
better results than other filters at four out of six SNR levels.
At SNR from -1 dB to 10 dB, UDR has an average RMSE
greater than the second-best time-domain filter from 0.88%
at SNR = 10 dB to 9.6% at SNR = 5 dB. The comparison
in terms of COR between UDR and the second-best time-
domain filter at these SNR levels are from 0.05% at SNR = 10



TABLE II: AVERAGE RESULTS OF COMPARATIVE
NON-CASCADED ALGORITHMS ON TEST SIGNALS

SNR Metrics BF SG MA UDR CUDR

-10 RMSE 3.5749 5.5188 2.2640 2.3667 1.9833
COR 0.6595 0.5004 0.8103 0.7974 0.8390

-5 RMSE 2.0643 3.1036 1.3462 1.3512 1.1819
COR 0.8354 0.7168 0.9188 0.9187 0.9350

-1 RMSE 1.3748 1.9584 0.9432 0.8827 0.8152
COR 0.9160 0.8523 0.9577 0.9634 0.9692

1 RMSE 1.1450 1.5558 0.8151 0.7234 0.6931
COR 0.9395 0.8989 0.9679 0.9752 0.9784

5 RMSE 0.8457 0.9820 0.6576 0.5041 0.5331
COR 0.9657 0.9558 0.9788 0.9881 0.9884

10 RMSE 0.6676 0.5530 0.5722 0.3607 0.4439
COR 0.9782 0.9853 0.9839 0.9939 0.9927

TABLE III: AVERAGE RESULTS OF COMPARATIVE
CASCADED ALGORITHMS ON TEST SIGNALS

SNR Metrics SG-BF CSG SG-MA CMA CUDR

-10 RMSE 3.5622 5.1858 2.2299 2.0655 1.9833
COR 0.6608 0.5239 0.8145 0.8245 0.8390

-5 RMSE 2.0574 2.9164 1.3281 1.4340 1.1819
COR 0.8363 0.7381 0.9207 0.9036 0.9350

-1 RMSE 1.3706 1.8403 0.9329 1.2004 0.8152
COR 0.9165 0.8663 0.9585 0.9299 0.9692

1 RMSE 1.1419 1.4620 0.8076 1.1361 0.6931
COR 0.9398 0.9091 0.9685 0.9367 0.9784

5 RMSE 0.8440 0.9229 0.6539 1.0658 0.5331
COR 0.9658 0.9606 0.9790 0.9439 0.9884

10 RMSE 0.6669 0.5198 0.5710 1.0325 0.4439
COR 0.9783 0.9870 0.9839 0.9472 0.9927

dB to 0.73% at SNR = 1 dB. At lower level of SNR ({5,-10}
dB), the outperformance of UDR is no longer maintained. The
quantitative results in Table II indicate the difference between
UDR, now ranked the second best, and the best (MA) is -0.5%
to -10.27% in RMSE and -0.01% to -1.29% in COR.

As discussed, much human intervention is required to
maintain the performance of UDR at low SNR levels, hence
the development of CUDR. Table II shows the significant
enhancement of CUDR over UDR at low SNRs ({-10, -5, -
1, 1} dB). At these SNR levels, compared to UDR results,
CUDR enhances 3.03% to 38.34% in RMSE, and 0.32% to
4.16% in COR. However, the effectiveness of CUDR did not
happen at the higher SNRs (5 and 10 dB) as UDR did. The
difference between CUDR and UDR at those noise levels is -
8.32% to -2.9% in RMSE and -0.12% to 0.03% in COR. These
results show that although CUDR could enhance UDR at low
SNRs, it does not perform as good as UDR at higher SNRs.

Table III shows the comparison between cascaded smooth-
ing algorithms. Notably, CUDR has outperformed the partic-
ipating filters in all SNR levels. Indeed, CUDR is better than
the second-best from 7.59% to 14.62% in RMSE and 0.57%
to 1.45% in COR. The enhancement of other participating
cascaded filters compared to the single stage one is not much,
except CSG, as similarly verified in [15]. Besides, CMA even
decreases the effectiveness of the origin filter (MA) in the test.

Although CUDR has outperformed other cascaded arrange-
ments of participating filters and enhanced the performance

TABLE IV: PROCESSING TIME COMPARISON

Signal Algorithms Duration
(ms)

Sampling
rate (Hz)

Processing
time (ms)

co
nc

at
en

at
ed

BF

25000 1000

0.196
SG 0.234
MA 0.148

SG-BF 0.443
CSG 0.359

SG-MA 0.393
CMA 0.183
UDR 507.511

CUDR 2282.644

of UDR at low SNR levels, the algorithm currently has some
processing time limitations. Due to the cascaded arrangement,
UDR is employed twice, leading to higher computational
burden. The processing time of participating filters in a
concatenated signal are shown in Table IV. This experiment
was performed on an Intel(R) Core(TM) i9-10900 CPU @
2.80GHz with 64GB RAM and GPU NVIDIA GeForce GTX
3090 using MATLAB 2021 for Ubuntu 20.04.5 LTS.

V. DISCUSSION

The experiment results in this work have confirmed the
UDR performance and demonstrated the promising potential
of a vision-based filter in signal smoothing. This work has
also indicated the limitation of UDR in very noisy signals
and proposed an enhanced version, the CUDR. Indeed, the
signal smoothing ability compared to UDR at low SNR levels
has been significantly increased. For instance, at the noisiest
level (SNR = -10 dB), CUDR is the only filter returning
RMSE under 2, outrunning the second-best (CMA) at 1.45%
in terms of COR. The reasons resulting in the out-performance
of CUDR is the cascaded arrangement with two different line
width values at each stage to take advantage of the original
UDR while overcoming its limitation. When the noisy signal
is plotted with small line width at the first stage, the waveform
of the original signal is preserved. At the cascaded stage with a
higher line width, the immediate result is smoothed, outputting
the filtered signal with a high correlation to the original one.
The processing time is the current limitation of CUDR due
to the two-time implementation of UDR, while some internal
steps have yet to be optimized. In our future work, some
image processing methods will be investigated to undertake
the tasks in the cascaded stage of CUDR for processing time
enhancement.

VI. CONCLUSION

An enhanced smoothing algorithm using the Upscale and
Downscale Representation idea combined with the cascaded
concept is introduced in this work where the output of the
first UDR is the input of the second one. CUDR significantly
enhances the signal smoothing result compared to UDR and
other comparative time-domain filters, especially at low level
of SNR. The obtained results have confirmed the potential of
vision-based methods in EEG-like signals, the effectiveness of
which in real-EEG signal will be verified in our future work.
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