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ABSTRACT 

This paper presents a new approach for blind separation of 
nonstationary frequency-modulated (FM) sources in the un- 
derdetermined case (i.e., more sources than sensors) using 
their time-frequency distributions (TFDs). The underlying 
idea of the proposed blind source separation (BSS) method 
is based on the observation that a monocomponent FM sig- 
nal is represented by a linear feature corresponding to the 
‘energy concentration points’ in the time-frequency (TF) 
image. Therefore, we propose to adapt an existing ‘road 
network extraction’ method [Tupin et al. (199811 for the 
detection and separation of the source signal components 
from the spatially averaged TF  image of their mixtures. The 
sources spatial signatures are then used to group together 
(classify) the components of the same source (or equiva- 
lently, the same spatial direction). Simulation examples are 
provided to assess the performance of proposed algorithm 
in various scenarios. 

1. INTRODUCTION 

Blind source separation (BSS) is a fundamental technique 
in array signal processing aiming at recovering unobserved 
signals or sources from observed mixtures (typically, the 
outputs of a multisensor array), exploiting usually the as- 
sumption of mutual independence between the signals [I]. 
The term ‘blind’ indicates that neither the structure of the 
mixtures nor the source signals are known to the receivers. 

BSS has attracted a wide attention over the past decade 
and been signified by an ongoing series of conferences [2]. 
Useful reviews of BSS theories and algorithms can be found 
in [ 1 , 3 4 ] .  BSS has many applications in areas involving 
processing of multi-sensor array signals where spatial di- 
versity is exploited. 

In the case of nunstatiunnry signals, a time-frequency 
(TF) based approach was introduced in [7,8] by defining 
the spatial time-frequency distribution (STFD), which com- 
bines both TF  diversity and spatial diversity. The benefits 
of STFD in an environment of nonstationary signals is the 
direct exploitation of the information brought by the nonsta- 
tionarity of the signals. A challenging problem in this field 
is the source separation in situations where there are more 

sources than sensors [lo]. This difficult problem, known as 
the underdeterminedBSS (UBSS), has recently been studied 
in [10-13] where discrete sources were treated; and in [I41 
where disjoint orthogonality of the short-time Fourier trans- 
form was exploited. 

Recently, a new UBSS method based on the TF domain 
orthogonality concept has been proposed [I 51. This method 
exploits the fact that all the TF aut-term points of the same 
source have the same principal eigenvector representing the 
source direction. Thus, by clustering all the TF  auto-term 
points into different groups, i.e. source TF  signatures, one 
is able to recover the original source using a TF synthesis 
algorithm. 

A major problem of the algorithm proposed in [IS] is 
that the TF  auto-term selection process does not, in prac- 
tice, cleanly remove all the undesired cross-term points. As 
a consequence, the original sources, though successfully re- 
covered, contain some undesired artifacts. This algorithm 
was improved by using other reduced-interferenceTFD dis- 
tributions for suppressing the cross-terms [IS]. In this pa- 
per, we want to further improve the above algorithm from 
an image processing point of view by adding a component- 
extraction procedure. 

The component-extraction procedure can be seen as the 
detection of the linear features in the TF  image of the sig- 
nal. This problem has been widely addressed in image pro- 
cessing field, specially for road detection applications with 
aerial or satellite images. Therefore, classical image pro- 
cessing tools can be easily adapted to our component<xtrac- 
tion objective. 

2. BACKGROUND 

2.1. Signal model and assumptions 

Assume that an n-dimensional vector s ( t )  = [ s l ( t ) ,  . . . , 
s,(t)lT E dnxl) corresponds to n nonstationary complex 
source signals si(t) ,  i = 1 , .  . . , n. The source signals are 
transmitted through a medium so that an array of m sen- 
sors picks up a set of mixed signals represented by an m- 
dimensional vectorx(t) = [ q ( t ) ,  . . . , zm(t)lT E 
Consider an instantaneous linear mixture medium, the ob- 
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served signals can, then, be modeled as: 

x(t) = As(t) + a(t), (1)  

where A E is called the mixing matrix and q( t )  = 
[ol(t) ,v*(t) , .  . . ,vm(t)lT E dmxl) istheobservationnoise 
vector. For the UBSS problem, i.e. n > rn, the mixing ma- 
trix A is not (left) invertible. 

Here, the sources are assumed to he multicomponent 
FM signals. By a'multicomponent signal, we mean a sig- 
nal whose TF representation presents multiple ridges in the 
time-frequency plane. Analytically, the k-th source may be 
defined as, 

where each component sk,l( t) ,  of the form 

sk , l ( t )  = a k , l ( t )  e ~ ~ ~ ~ ~ ( ' ) ,  ( 3 )  

is assumed to have only one ridge in the TF plane. An ex- 
ample of a multicomponent signal, consisting of three com- 
ponents, is displayed in Figure 1.  

m.3". -5; 

Id- 
Figure 1:  A time-frequency distribution of a multicompo- 
nent signal. 

2.2. TFD-based Algorithm for UBSS 

In [IS], a TFI-based algorithm was proposed tn solve the 
UBSS problem. This algorithmachieves the separation based 
mainly on the assumption of source TF orthogonality that 
allows an explicit use of the nonstationarity property. The 
algorithm IS composed of four main steps (see [ 151 for more 
details): 

e Computation of the spatial time-frequency distribu- 
tion (STFD) matrices of the observations, and noise 
thresbolding: 

a test is then applied to separate the auto-term TF 
points from cross-term TF points by applying an ap- 
propriate testing criterion based on the normalized 
trace function of the STFD matrices; 

vector clustering to obtain the TF signatures of sources, 
hence their TFDs. This is done by observing that 
the auto-term STFD matrices of the same source sig- 
nal have the same principal eigenvector (which come- 
sponds to the considered source spatial signature); 

and recovery of original source waveforms from their 
estimated TFDs using TF synthesis. 

Next, we propose to improve the separation performance 
of such TFD-based algorithms by using a component ex- 
traction procedure exploiting the linear-features of consid- 
ered FM-like signals. 

3. PROPOSED UBSS ALGORITHM 

To achieve UBSS, we introduce here a four-step approach 
consisting of  

Computation and spatial averaging of the observed 
signal TFDs: 

Image component extraction to separate all signal com- 
ponents; 

Components classification to group together compo- 
nents belonging to the same multicomponent source 
signal; 

0 Time frequency signal synthesis to recover the origi- 
nal source waveforms. 

3.1. Time frequency signal analysis and spatial averag- 
ing 

The discrete-time form of the Cohen's class of TFDs, for a 
signal z(t),  is given by [91 

(4) 

where t and f represent the time index and the frequency 
index, respectively. The kernel 4 ( k ,  I )  characterizes the dis- 
tribution and is a function of both the time and lag variables. 
The cross-TFD of two signals 21 ( t )  and z2 ( t )  is defined by 
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Expressions (4) and ( 5 )  are now used to define the following 
data spatial time-frequency distribution (STFD) matrix, 

x(t + k + l ) x H ( t  + k - l)e-j4vfl 

where [Dxx(t , f ) ] ; j  = D z i z j ( t , f ) ,  for i , j  = 1 , 2 , .  . . ,m 
and xH denotes the conjugate transpose of x. 

Under the linear data model of equation (1 ) and neglect- 
ing the noise terms, the STFD matrix defined in (6) takes 
the following structure: 

Dxx( t , f )  = ADss(t ,  f ) A H  

where D.,(t, f )  is the source TFD matrix whose entries are 
the auto- and cross-TFDs of the sources. 

To have a 'clean' distribution (i.e., a distribution that can 
reveal the features of the signal as clearly as possible with- 
out any 'ghost' component), we did use a newly developed 
high resolution quadratic TFD called the B-distribution [21]. 
In addition, we did use a spatial averaging [20] that miti- 
gates further the sources cross-terms by a factor depending 
on their spatial signatures angle (see [20] for more details). 
More precisely, we compute the averaged TFD (on which 
line detection is applied) as: 

m 

D(t ,  f )  = *=e(DXx(t, f ) )  = 1 &,,, (t ,  f )  (7) 
1=1 

3.2. Image-component extraction 

The component-extraction method is divided into two main 
steps: (i) line detection giving local hinary detection of the 
potential linear structures (segments), and (ii) global opti- 
mization giving a set of labeled components. Due to the 
scope of the paper, we only give a brief review of the method. 
Additional information, such as statistical behavior and typ- 
ical values for thresholds, can be found in [ 161 and refer- 
ences therein. Because of the particularity of the TFD im- 
age, a preprocessing is needed before applying the compo- 
nent extraction procedure as explained below. 

3.2.1. Preprocessing 

The preprocessing consists first of the transformation of the 
TF image onto a real positive-valued image by forcing to 
zero all negative values' of the TFD and by using a gray 
scale in the range [l, 2561. Also, line detectors are usually 
limited to a line width of 5 pixels. If the researched compo- 
nents do not respect this limit (which is usually the case for 
a TF  image), an image suhsampling by block-averaging is 
applied to reduce the pixel size. Despite the blurring effect, 

'Negative values corrcspand l o  undesired cross-terms or noise. 

this filter presents the advantage of reducing the noise in the 
TF  image. Moreover, as the TF  image is unisotropic (i.e., 
it contains horizontal lines as can be observed in Figure I ) ,  
this image downsampling (see Figures 3-f and 4 - 0  removes 
this particular feature of the TF  image. 

3.2.2. Line detection: Local optimization 

Line detection is done at the pixel level by determining whe- 
ther a pixel belongs to a line crossing it along a particular di- 
rection. Given a pixel zo and a direction d k  E I d l ,  . . . , dNd} 
(Nd = 8, typically). Three regions associated with xo and 
d k  are then set up as shown in Figure 2 with pi being the 
averaged amplitude (in terms of intensity). The response he- 
tween two regions i and j is defined through their contrasts 
c;j = pe/pj as in @a), or through their crosscorrelation 
coefficients as in (8b): 

T . .  - 1 - m' ( 8 4  rJ - l n { c i j , c j i ) ,  

where, for region i ,  n; is the number of pixels and yi is 
the variation coefficient (ration of standard deviation and 
mean). The detector is then defined by the minimum re- 
sponse of the filter on both sides of the structure: 

T = min{rot,roz} 5 er 
P = min { P O I ,  P O Z }  2 ep 

(9a) 
(9b) 

Figure 2: Regions associated with pixel zo and direction d k .  

A line passing xo along direction d k  is detected when 
the filter response is higher than the decision threshold er 
(or ep).  In practice, the line detector defined by (9a) is less 
accurate, whereas, the one defined by (9b) is sensitive to 
the threshold. Therefore, a combined binary detector was 
proposed using an associative symmetrical sum below: 

ifi 
U ( F , P )  = > 0 5, F , p  t [0,1] (10) 

1 - i - p + 2 f p <  . 

where i and fi are the normalized, to the range of [0 ,1] ,  of 
T and p according to: i := max {0, min { l , ~  + 0.5 - e ? } }  
(similarly for p ) .  The detector in (10) is chosen because it 
is indulgent disjunctive for f, p > 0.5, and conjunctive for 

Further processing on the linedetected pixels to form 
segments is performed by first suppressing the isolated pix- 
els, which are not closed (in terms of direction) to any other 

i , p  < 0.5. 
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neighboring pixels, and then linking pixels closed (in terms 
of direction and spatial distance) to each other. 

3.2.3. Road defection: global optimization 

Given a set of locally detected segments found in the previ- 
ous step, this step introduce global constraints on the shape 
of the linear features to connect segments that correspond 
spatially to a larger feature in the whole image, i.e. to con- 
nect parts of 3 true “road”, while suppressing falsely de- 
tected segments. The connection scheme is globally opti- 
mized using Markov randomfield (MRF-based model for 
roads [16]. In this paper, the underlying MRF model is de- 
fined on a graph structure as follows 

MRF model on graphs [ I  71: Let G = { V ,  &} he a graph, 
where V = (sl,. . . , s N }  is the set of vertices (nodes), and 

. E  is the set of edges connecting them. Suppose that there 
existsaneighborhoodsystemN = {n(s l ) ,  ..., n(s”)} on 
G where n(si) is the set of all the nodes in V that are neigh- 
hors of s; such that (i) si f n(si), and (ii) s j  E n(si) - 
si E n(s j ) .  Let X = {$I, ..., Z N }  he a family of ran- 
dom variables defined on V ,  then X is called a randomfield 
where xi is the random variable associated with si. We say 
X is an MRF on E with respect to (w.r.1.) N iff’: 

1. p ( x )  > 0 for all realizations x E R,  and 

2. P(ZiIZj,Sj # Sj) =p(z i lZ j ,s j  En(.;)) 

A clique c is a subset of V for which every pair (si, s j )  E 
c are neighbors. Denote C(G,N) the collection of all the 
cliques of w.r.t. N ,  the general functional form of the 
pdf of the MRF can be expressed as the following Gibbs 
distribution: 

where U ( x )  = V,(x) is called the Gibbs’s energy 
function, V, is called a potential depending on c,  and t is a 
normalizing constant. 

We now apply the above MRF model on graphs to our 
problem of road detection. The nodes si are the detected 
segments. The set E contains “possible” connections. A 
possible connection is verified by: (i) it links two end-points 
(ef,el;  k,l E {1,2}) of two different segments, (ii) the 
end-points are closed enough, and (iii) the alignment of 
the two segments is acceptable. The neighborhood of si is 
n(s;) = { s j  : 3(k,p),e,k = ep,j # i}. The cliques are all 
subsets of V sharing an extremity, including singletons and 
cycles of three segments. Road detection consists in iden- 
tifying the nodes that belong to a road, i.e. in labeling the 
graph, resulting a label random field: C = { LI , . . . , L N }  
(Li = 1 if si belongs to a road, and Li = 0 otherwise). C. 
takes its values in Ct, the set of all ( z N )  possible configura- 
tions (realizations). 

The result of road detection is defined as the most proha- 
ble configuration for L given the observation3 2) = { D I  , . . . , 
D N }  forthe segments of V .  The solution, then, corresponds 
to the maximum of the conditional probability distribution 
of C given ’D, using Bayesian rule, as: 

All the probability distributions p(DlC), p(C) and p ( D )  
follow the Gibbs distribution in (11). Details of their cor- 
responding energy functions and clique potentials can he 
found in [16]. 

The output of the road detection step is the set of roads 
with their associated segments. A simple snake-based me- 
thod is then used to visually joint the labeled segments [16]. 
In the resulting TF plane (having converted from the above 
output image), each extracted road is now called a source 
component belonging to some particular source signal. 

3.3. Component classification 

In [15],it has beenohservedthat twoauto-termpoints ( t l ,  f i)  
and ( t z ,  6) corresponding to the same source si@) are such 
that: 

Dxx(tl, fd = D s < a < ( h , f l ) a i a ? ,  

Dxx( t z , f i )  = D s ~ s l ( ~ ~ , f ~ ) a i a f ,  

which means that Dxx( t , , f l )  and Dxx( t z , f2 )  have the 
same principal eigenvector ai (ai being the i-th column 
vector of A). The idea of the proposed component clas- 
sification procedure is to group together components asso- 
ciated with the same spatial direction (estimated as the aver- 
aged value over all component points of the principal eigen- 
vectors of the corresponding STFD matrices) representing a 
particular source signal. 

For each extracted component C, one estimate the cor- 
responding spatial direction as: 

where Z, denotes the set of points of component C, #IC 
denotes the number of points in ZC and a( t j ,  fi) is the es- 
timated principal eigenvector of the i-th component point 
STFD matrix D,,(ti, f i ) .  These vectors are then clustered 
into different classes using the clustering algorithm in [15]. 

3.4. Time frequency signal synthesis 

The source signatures, after a proper clustering step, can be 
reconstructed to obtain their original waveforms through the 
use of TF synthesis. We have applied in our simulations a 

’p(.) = P(X = x). 3Di is deduced by averaging o(P, 6) of all pixels in segment si 
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classical but seminal algorithm (without any TF masking), 
proposed by Boudreaux-Bartels et al. [ 181. Other synthesis 
algorithms can be found in [9, 191. The successful recovery 
of original signal waveforms depends on the signal type, 
choice of TFD, the robustness of vector clustering step, and 
the performance of the time-frequency (TF) synthesis algo- 
rithm itself. 

On the other hand, instead of using TF synthesis, we 
may apply the time-varying notched filter approach as shown 
in [22]. 

4. SIMULATED EXPERIMENT 

To illustrate the performance of the proposed algorithm we 
present here two simulation examples corresponding to the 
separation of n = 3 multicomponent FM sources using 
m = 2 mixtures (outputs). All components are of constant 
amplitude equal to one and additive noise power is set to 
0 0 .  In the first case (Figure 3), all sources are chirp sig- 
nals (two of them are monocomponent chirps and the third 
one is a twwcomponents chirp signal) and in the second 
case (Figure 4), one of the sources is a monocomponent 
quadratic FM signal. 

Although no thorough statistical analysis has been done 
so far, we can observe from these results very good estima- 
tion performances that can be confirmed and reinforced in 
future works by more detailed performance studies. 

5. CONCLUSION 

This paper has presented a new approach for blind separa- 
tion of nonstationary sources using their TFDs. This ap- 
proach is based on a ’line detection algorithm’ to extract 
separately all the components, using a spatially averaged 
‘cross-terms free’ time-frequency distribution (TFD), of the 
observed signal. The source spatial signatures are then used 
to group together components of the same source signal 
through a vector clustering procedure. Simulation examples 
are provided to illustrate the performances of the proposed 
method for the underdetermined blind separation of non- 
stationary FM signals. The method developed in this paper 
represents a new research direction for solving the UBSS 
problem. Still many problems remain under investigation 
including improvements of the vector clustering steps, a 
detailed performance analysis to better assess the advan- 
tages and limits of this new approach, comparisons with the 
method in [15], and extensions to the convolutive mixture 
case. 
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