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Abstract— Inertial navigation, integrated with other navigation 
aids such as Global Positioning System (GPS), has gained 
significance in recent years. The integrated navigation system can 
be used to determine attitude, velocity and position of the moving 
objects. This paper presents an approach to designing an 
INS/GPS based navigation system using a combination of an 
Extended Kalman Filter (EKF) and a Linear Kalman Filter 
(LKF). These include a first-stage eight-state EKF for the GPS 
data and a second-stage eight-state LKF for the INS/GPS 
integration. The advantage of this design is that we can utilize the 
simplicity of the LKF but keep the high performance of the EKF. 
Comparison and analysis of the new scheme is carried out, and it 
is demonstrated that the proposed configuration is useful 
technique. 

Keywords- INS/GPS integration, Extended Kalman filter, 
navigation. 

I.  INTRODUCTION 
The Global Positioning System (GPS) can provide 

continuous and accurate positioning with lines of sight (LOS) 
with more than four satellites.  However,  the  accuracy  and  
availability  of  GPS-based  vehicular  navigation  systems  are  
subject  to  the  open-sky condition and degrade in the presence 
of signal blockage or reflected signals. An Inertial Navigation 
System (INS) can fill the GPS gaps to provide continuous 
navigation parameters (position, velocity, and attitude).  An 
Inertial Measurement Unit (IMU) consists of a set of inertial 
sensors (gyroscopes and accelerometers). An INS usually 
refers to a combination of an IMU and a box PC that can 
provide navigation parameters in the navigation frame directly 
in real-time [1].  MicroElectroMechanical System (MEMS) 
based inertial sensors are preferred as the complementary 
component to GPS for general navigation applications [2].  
However, the positioning accuracy of these low-cost inertial  
sensors degrades rapidly with time when GPS signals are 
interrupted [3].  

The GPS and INS can be integrated by using Kalman filters 
[4]. The Kalman filter is one kind of optimal filter that can 
efficiently estimate the state of a process. In this paper we 
develop a scheme that utilized both the high performance of 
EKF and the simplicity of the LKF. These include a EKF for 
GPS data filtering and a LKF for INS/GPS integration. 
Comparison and analysis of the proposed scheme with others is 
carried out, and it is demonstrated that it is a useful technique 
for practical applications. 

In this paper, we have proposed to use an extended Kalman 
filter (EKF) to improve the quality of an existing system [7]. 
The EKF is used to process the raw information from the GPS 
(without direct information such as velocity or position), which 
provide more accurate information of navigation parameters 
before feeding to the INS/GPS block. The simulated results 
showed that the output quality of the GPS-EKF is better than 
regular GPS. Consequently, the quality of whole of INS/GPS 
integrated system will be improved significantly. Position 
accuracy is improved by about 1-2 m. 

The paper is organized as follows. In Section 2, we 
introduce the brief background of INS, GPS, and the proposed 
INS/GPS integration scheme. Simulation results to demonstrate 
the efficiency of our method are presented in Section 3. Section 
4 concludes the paper with discussions on the results and 
remarks for future work. 

II. WORKING PRINCIPLES 

A. Inertial Navigation System 
An INS consists of an Inertial Measurement Unit (IMU) 

and a navigation algorithm [5]. An IMU often measures 
moving object accelerations in three dimensions (i.e. ax, ay, az  ) 
and its rotations (i.e. p, q, r) in the body frame with a high 
update rate. Using a specific navigation algorithm (e.g. 
Strapdown Inertial Navigation System – SINS), these raw 
measurements can be processed to compute three kinds of 
navigation parameter: positions (X, Y, Z), velocities (U, V, W) 
and attitudes (φ, θ, ψ). Note that these parameters are computed 
in the navigation frame. It means that in the navigation 
algorithm we have to implement frame transformation. A 
serious problem with the navigation system based on INS is 
that it drifts with time. Drifts in gyroscope lead to wrong 
estimation of transformation matrix which in turn 
misrepresents navigation parameters. Not only drift error, there 
are several dominant error sources of INS: alignment errors, 
accelerometer bias, cross-talk errors of accelerometers and 
gyroscopes, and random noise. Thus, every INS needs a 
reliable and additional information system to reduce these 
errors. One kind of popular systems which is also mentioned in 
this paper is GPS.  

B. Global Position System 
The main task of Global Positioning System (GPS) is to 

provide highly accurate position and velocity of the object 
equipped GPS receiver [6], based on one-way ranging 
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technique. GPS user receives signals from at least four 
satellites and uses its self–generated replica to measure relative 
phase. Consequently, the position (latitude, longitude), 
velocity, altitude and a correction to the user’s clock of the 
object can be computed using triangulation method. In the ideal 
case (i.e. without errors and Selective Availability), we can 
achieve a precision in calculating the position. However, we 
can not ignore the GPS ranging errors such as ionospheric, 
tropospheric, satellite clock errors, etc.  

The pseudorange ρi can be expressed with the measurement 
equation for each satellite: 

 i
i

i vbrr ++−=ρ
 

(1) 

where r and ri are the positions of the GPS receiver and the 
ith satellite, irr − is the ideal distance between the GPS 
receiver and the ith satellite, b is the error caused by the clock 
bias at the GPS receiver, and vi is the measurement noise that 
can be assumed white noise. 

Solutions of the measurement equations can also be solved 
through iterative least square (ILS) [7] technique or Kalman 
filtering. The ILS offer a fast and simple calculation of the 
position by using each independent measurement set. In this 
paper, we propose to use the EKF to obtain high accuracy in 
position and velocity estimations. 

C. Configuration of the proposed integrated navigation 
system 

 
Figure 1.  Configuration of the EKF and LKF in the proposed scheme 

 

The INS system has two main advantages when comparing 
with other navigation system: self-contained ability and high 
accuracy for short-term navigation.  In long-term navigation 
applications, the INS should work with the aid of the GPS 
system. The integration of INS and GPS is considered an 
optimal combination. The heart of integrated system is Kalman 
algorithm. This paper presents an approach to designing an 
INS/GPS based navigation system using a combination of an 
Extended Kalman Filter (EKF) and a Linear Kalman Filter 
(LKF) [8] as shown in Figure 1. 

1) EKF for GPS filtering 

From the pseudorange equation, it can be seen that we need 
to estimate the position and velocity of the GPS receiver from 
the measured pseudorange from at least four satellites. The 
state vector at time step k includes object’s position ( rx, ry, rz), 
object’s velocity ( vx, vy, vz) , bias’s clock b and drift’s clock d: 
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The system model can be shown as: 
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where ∆t is the update rate of the GPS data (in this work, ∆t 
can be chosen at 1 second); and kω  is the process noise 
whose the covariance matrix is a 8x8 matrix: 
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where Qx, Qy, Qz,  are the covariance matrixes of the positions 
and velocities in three dimentions. 
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And Qb is the covariance matrix of the clock’s bias and the 
drift: 
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where Sg, Sf are state transition variances of bias’clock and 
drift’s clock. 

In the measurement equation of (3), h is the function for the 
measurement (see (1)): 
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Where rk is the measurement vector at time step k which 
consists of pseudoranges from N satellites, and the additive 
observation noise in (3) has the covariance matrix R. 

The EKF flowchart can be summarized in Algorithm 1. 

Algorithm 1.  Extended Kalman filter for GPS positioning 

Choose initial values of  xo, Q, R, Po, ∆t, and the total step N     
while k < N 

 1. One step projection )0,(ˆ 11/ −− = kkk xfx  

 2. Linearize input function f and g to get Fk and Hk for an 
ordinary Kalman filter 

 
3. Calculate the covariance matrix of 1/ˆ −kkx  

T
kk

T
kkkkkk QHHFPFP += −−− 1/11/  

 
4. Calculate Kalman gain 

1
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5. Update the out state 

)ˆ(ˆˆ 1/1// −− −+= kkkkkkkkk xHyKxx  

 
6. Update the covariance matrix 

1// )( −−= kkkkkk PHKIP  

 7. k = k + 1 
End 

 

2) LKF for INS/GPS integration 

The performance of LKF for INS/GPS integration has been 
presented in [8]. It can be shown here for the completion. We 
can see in Fig. 1 that the measurement vector of LKF is the 
subtraction of the INS velocity from GPS ones. Thus, it can 
eliminate the nonlinearity effect of both INS and GPS. Note 
that with the support of the EKF in the previous block, the 
variance of the measurement vector here can be significantly 
reduced. Thus, the performance of the overall system can 
improved.  

The state vector of this LKF can be shown as: 

 
[ ]T
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(9) 

Where TN, TE are the attitude errors, δvE, δvN, δvD, are the 
subtraction of the INS velocity from GPS ones, and Gbx,  Gby, 
Gbz, are the drift errors of three gyroscopes. Note that three 
first components of the state vector form the measurement 
vector: 
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The drift errors of three gyroscopes would be brought back 
to the INS in order to adjust the angular increments: 
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(11) 

The quality of sensors used in the IMU also determines the 
system performance. We can see the role of these inertial 
sensors in the covariance matrix of the process noise. 

III. IMPLEMENTATION RESULTS 
 

Figure 2 is the velocities estimated by the EKF using the 
satellite positions and   pseudoranges. With the assumed that 
the vehicle is standing still, its velocities are converged to 0 
m/s that proved the correctness of the program. 
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Figure 2.  Velocities estimated by the EKF using  the satellite positions and   

pseudoranges 

Figure 3 shows more specific accuracy of the EKF when 
comparing the position error of the ILS and the EKF. 

 

0 5 10 15 20 25
0

2

4

6

8

Time -s

E
rr
or

 d
is

ta
nc

e 
in

 N
or

th

 

 
EKF

ILS

 
(a) 

0 5 10 15 20 25
0

5

10

15

20

Time -s

E
rr
or

 d
is

ta
nc

e 
in

 E
as

t

 

 

 
(b) 

0 5 10 15 20 25
0

10

20

30

40

Time -s

E
rr
or

 in
 h

ei
gh

t

 

 

 
(c) 

Figure 3.  Position comparisions between the EKF and the ILS 
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(b) 

Figure 4.  Calculation of distances in the North and the East using only GPS 
and INS/GPS systems 

 

Figure 4.a and 4.b are the position outputs along the north 
and east of the entire integrated system using the extended 
Kalman filter (to improve the accuracy of the GPS) and linear 
Kalman filter (to combine output of GPS with inertial 
navigation system). The integrated system will both have such 
a high accuracy (over the whole system without EKF), high 
updated speed with acceptable complexity. 

 

IV. CONCLUSION 
This paper has success in combination of an extended and a 

linear Kalman filters to a simple but high performance system. 
The quality of the entire system INS/GPS offer the position 
estimation in the range 1-2 m. There are a number of studies 
that have integrated parameters of the object navigation and the 
GPS in a single EKF filter. This approach increases the 
complexity of the system and the stability of the entire system 
will be able to affected when a certain input errors encountered. 
This integration system ensures the accuracy, flexibility and 
also reduces the complexity, as a basis favorable to be put to 
use in real time. 
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