Cong Phi Khanh, Phung and Tran, Duc-Tan and Tu Duong, Van and Hong Thinh, Nguyen and Tran, Duc-Nghia (2020) The new design of cows' behavior classifier based on acceleration data and proposed feature set. Mathematical Biosciences and Engineering, 17 (4). pp. 2760-2780. ISSN 1551-0018
|
PDF
Download (1MB) |
Abstract
Monitor and classify behavioral activities in cows is a helpful support solution for livestock based on the analysis of data from sensors attached to the animal. Accelerometers are particularly suited for monitoring cow behaviors due to small size, lightweight and high accuracy. Nevertheless, the interpretation of the data collected by such sensors when characterizing the type of behaviors still brings major challenges to developers, related to activity complexity (i.e., certain behaviors contain similar gestures). This paper presents a new design of cows' behavior classifier based on acceleration data and proposed feature set. Analysis of cow acceleration data is used to extract features for classification using machine learning algorithms. We found that with 5 features (mean, standard deviation, root mean square, median, range) and 16-second window of data (1 sample/second), classification of seven cow behaviors (including feeding, lying, standing, lying down, standing up, normal walking, active walking) achieved the overall highest performance. We validated the results with acceleration data from a public source. Performance of our proposed classifier was evaluated and compared to existing ones in terms of the sensitivity, the accuracy, the positive predictive value, and the negative predictive value.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | cow, monitoring, acceleration, sensor, classification |
Subjects: | Electronics and Communications > Communications Electronics and Communications > Electronics and Computer Engineering ISI-indexed journals ISI/Scopus indexed conference |
Depositing User: | Hong Thinh Nguyen |
Date Deposited: | 26 Dec 2020 09:29 |
Last Modified: | 26 Dec 2020 09:29 |
URI: | http://eprints.uet.vnu.edu.vn/eprints/id/eprint/4330 |
Actions (login required)
View Item |